109 lines
3.5 KiB
Python
109 lines
3.5 KiB
Python
from numbers import Number
|
|
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.exp_family import ExponentialFamily
|
|
from torch.distributions.utils import broadcast_all
|
|
|
|
__all__ = ["Gamma"]
|
|
|
|
|
|
def _standard_gamma(concentration):
|
|
return torch._standard_gamma(concentration)
|
|
|
|
|
|
class Gamma(ExponentialFamily):
|
|
r"""
|
|
Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`.
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0]))
|
|
>>> m.sample() # Gamma distributed with concentration=1 and rate=1
|
|
tensor([ 0.1046])
|
|
|
|
Args:
|
|
concentration (float or Tensor): shape parameter of the distribution
|
|
(often referred to as alpha)
|
|
rate (float or Tensor): rate = 1 / scale of the distribution
|
|
(often referred to as beta)
|
|
"""
|
|
arg_constraints = {
|
|
"concentration": constraints.positive,
|
|
"rate": constraints.positive,
|
|
}
|
|
support = constraints.nonnegative
|
|
has_rsample = True
|
|
_mean_carrier_measure = 0
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.concentration / self.rate
|
|
|
|
@property
|
|
def mode(self):
|
|
return ((self.concentration - 1) / self.rate).clamp(min=0)
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.concentration / self.rate.pow(2)
|
|
|
|
def __init__(self, concentration, rate, validate_args=None):
|
|
self.concentration, self.rate = broadcast_all(concentration, rate)
|
|
if isinstance(concentration, Number) and isinstance(rate, Number):
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self.concentration.size()
|
|
super().__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Gamma, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.concentration = self.concentration.expand(batch_shape)
|
|
new.rate = self.rate.expand(batch_shape)
|
|
super(Gamma, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def rsample(self, sample_shape=torch.Size()):
|
|
shape = self._extended_shape(sample_shape)
|
|
value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand(
|
|
shape
|
|
)
|
|
value.detach().clamp_(
|
|
min=torch.finfo(value.dtype).tiny
|
|
) # do not record in autograd graph
|
|
return value
|
|
|
|
def log_prob(self, value):
|
|
value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device)
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return (
|
|
torch.xlogy(self.concentration, self.rate)
|
|
+ torch.xlogy(self.concentration - 1, value)
|
|
- self.rate * value
|
|
- torch.lgamma(self.concentration)
|
|
)
|
|
|
|
def entropy(self):
|
|
return (
|
|
self.concentration
|
|
- torch.log(self.rate)
|
|
+ torch.lgamma(self.concentration)
|
|
+ (1.0 - self.concentration) * torch.digamma(self.concentration)
|
|
)
|
|
|
|
@property
|
|
def _natural_params(self):
|
|
return (self.concentration - 1, -self.rate)
|
|
|
|
def _log_normalizer(self, x, y):
|
|
return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal())
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return torch.special.gammainc(self.concentration, self.rate * value)
|