Traktor/myenv/Lib/site-packages/sympy/parsing/tests/test_mathematica.py
2024-05-26 05:12:46 +02:00

278 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from sympy import sin, Function, symbols, Dummy, Lambda, cos
from sympy.parsing.mathematica import parse_mathematica, MathematicaParser
from sympy.core.sympify import sympify
from sympy.abc import n, w, x, y, z
from sympy.testing.pytest import raises
def test_mathematica():
d = {
'- 6x': '-6*x',
'Sin[x]^2': 'sin(x)**2',
'2(x-1)': '2*(x-1)',
'3y+8': '3*y+8',
'ArcSin[2x+9(4-x)^2]/x': 'asin(2*x+9*(4-x)**2)/x',
'x+y': 'x+y',
'355/113': '355/113',
'2.718281828': '2.718281828',
'Cos(1/2 * π)': 'Cos(π/2)',
'Sin[12]': 'sin(12)',
'Exp[Log[4]]': 'exp(log(4))',
'(x+1)(x+3)': '(x+1)*(x+3)',
'Cos[ArcCos[3.6]]': 'cos(acos(3.6))',
'Cos[x]==Sin[y]': 'Eq(cos(x), sin(y))',
'2*Sin[x+y]': '2*sin(x+y)',
'Sin[x]+Cos[y]': 'sin(x)+cos(y)',
'Sin[Cos[x]]': 'sin(cos(x))',
'2*Sqrt[x+y]': '2*sqrt(x+y)', # Test case from the issue 4259
'+Sqrt[2]': 'sqrt(2)',
'-Sqrt[2]': '-sqrt(2)',
'-1/Sqrt[2]': '-1/sqrt(2)',
'-(1/Sqrt[3])': '-(1/sqrt(3))',
'1/(2*Sqrt[5])': '1/(2*sqrt(5))',
'Mod[5,3]': 'Mod(5,3)',
'-Mod[5,3]': '-Mod(5,3)',
'(x+1)y': '(x+1)*y',
'x(y+1)': 'x*(y+1)',
'Sin[x]Cos[y]': 'sin(x)*cos(y)',
'Sin[x]^2Cos[y]^2': 'sin(x)**2*cos(y)**2',
'Cos[x]^2(1 - Cos[y]^2)': 'cos(x)**2*(1-cos(y)**2)',
'x y': 'x*y',
'x y': 'x*y',
'2 x': '2*x',
'x 8': 'x*8',
'2 8': '2*8',
'4.x': '4.*x',
'4. 3': '4.*3',
'4. 3.': '4.*3.',
'1 2 3': '1*2*3',
' - 2 * Sqrt[ 2 3 * ( 1 + 5 ) ] ': '-2*sqrt(2*3*(1+5))',
'Log[2,4]': 'log(4,2)',
'Log[Log[2,4],4]': 'log(4,log(4,2))',
'Exp[Sqrt[2]^2Log[2, 8]]': 'exp(sqrt(2)**2*log(8,2))',
'ArcSin[Cos[0]]': 'asin(cos(0))',
'Log2[16]': 'log(16,2)',
'Max[1,-2,3,-4]': 'Max(1,-2,3,-4)',
'Min[1,-2,3]': 'Min(1,-2,3)',
'Exp[I Pi/2]': 'exp(I*pi/2)',
'ArcTan[x,y]': 'atan2(y,x)',
'Pochhammer[x,y]': 'rf(x,y)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[5]': 'airyaiprime(5)',
'AiryBi[x]': 'airybi(x)',
'AiryBiPrime[7]': 'airybiprime(7)',
'LogIntegral[4]': ' li(4)',
'PrimePi[7]': 'primepi(7)',
'Prime[5]': 'prime(5)',
'PrimeQ[5]': 'isprime(5)'
}
for e in d:
assert parse_mathematica(e) == sympify(d[e])
# The parsed form of this expression should not evaluate the Lambda object:
assert parse_mathematica("Sin[#]^2 + Cos[#]^2 &[x]") == sin(x)**2 + cos(x)**2
d1, d2, d3 = symbols("d1:4", cls=Dummy)
assert parse_mathematica("Sin[#] + Cos[#3] &").dummy_eq(Lambda((d1, d2, d3), sin(d1) + cos(d3)))
assert parse_mathematica("Sin[#^2] &").dummy_eq(Lambda(d1, sin(d1**2)))
assert parse_mathematica("Function[x, x^3]") == Lambda(x, x**3)
assert parse_mathematica("Function[{x, y}, x^2 + y^2]") == Lambda((x, y), x**2 + y**2)
def test_parser_mathematica_tokenizer():
parser = MathematicaParser()
chain = lambda expr: parser._from_tokens_to_fullformlist(parser._from_mathematica_to_tokens(expr))
# Basic patterns
assert chain("x") == "x"
assert chain("42") == "42"
assert chain(".2") == ".2"
assert chain("+x") == "x"
assert chain("-1") == "-1"
assert chain("- 3") == "-3"
assert chain("α") == "α"
assert chain("+Sin[x]") == ["Sin", "x"]
assert chain("-Sin[x]") == ["Times", "-1", ["Sin", "x"]]
assert chain("x(a+1)") == ["Times", "x", ["Plus", "a", "1"]]
assert chain("(x)") == "x"
assert chain("(+x)") == "x"
assert chain("-a") == ["Times", "-1", "a"]
assert chain("(-x)") == ["Times", "-1", "x"]
assert chain("(x + y)") == ["Plus", "x", "y"]
assert chain("3 + 4") == ["Plus", "3", "4"]
assert chain("a - 3") == ["Plus", "a", "-3"]
assert chain("a - b") == ["Plus", "a", ["Times", "-1", "b"]]
assert chain("7 * 8") == ["Times", "7", "8"]
assert chain("a + b*c") == ["Plus", "a", ["Times", "b", "c"]]
assert chain("a + b* c* d + 2 * e") == ["Plus", "a", ["Times", "b", "c", "d"], ["Times", "2", "e"]]
assert chain("a / b") == ["Times", "a", ["Power", "b", "-1"]]
# Missing asterisk (*) patterns:
assert chain("x y") == ["Times", "x", "y"]
assert chain("3 4") == ["Times", "3", "4"]
assert chain("a[b] c") == ["Times", ["a", "b"], "c"]
assert chain("(x) (y)") == ["Times", "x", "y"]
assert chain("3 (a)") == ["Times", "3", "a"]
assert chain("(a) b") == ["Times", "a", "b"]
assert chain("4.2") == "4.2"
assert chain("4 2") == ["Times", "4", "2"]
assert chain("4 2") == ["Times", "4", "2"]
assert chain("3 . 4") == ["Dot", "3", "4"]
assert chain("4. 2") == ["Times", "4.", "2"]
assert chain("x.y") == ["Dot", "x", "y"]
assert chain("4.y") == ["Times", "4.", "y"]
assert chain("4 .y") == ["Dot", "4", "y"]
assert chain("x.4") == ["Times", "x", ".4"]
assert chain("x0.3") == ["Times", "x0", ".3"]
assert chain("x. 4") == ["Dot", "x", "4"]
# Comments
assert chain("a (* +b *) + c") == ["Plus", "a", "c"]
assert chain("a (* + b *) + (**)c (* +d *) + e") == ["Plus", "a", "c", "e"]
assert chain("""a + (*
+ b
*) c + (* d
*) e
""") == ["Plus", "a", "c", "e"]
# Operators couples + and -, * and / are mutually associative:
# (i.e. expression gets flattened when mixing these operators)
assert chain("a*b/c") == ["Times", "a", "b", ["Power", "c", "-1"]]
assert chain("a/b*c") == ["Times", "a", ["Power", "b", "-1"], "c"]
assert chain("a+b-c") == ["Plus", "a", "b", ["Times", "-1", "c"]]
assert chain("a-b+c") == ["Plus", "a", ["Times", "-1", "b"], "c"]
assert chain("-a + b -c ") == ["Plus", ["Times", "-1", "a"], "b", ["Times", "-1", "c"]]
assert chain("a/b/c*d") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"], "d"]
assert chain("a/b/c") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"]]
assert chain("a-b-c") == ["Plus", "a", ["Times", "-1", "b"], ["Times", "-1", "c"]]
assert chain("1/a") == ["Times", "1", ["Power", "a", "-1"]]
assert chain("1/a/b") == ["Times", "1", ["Power", "a", "-1"], ["Power", "b", "-1"]]
assert chain("-1/a*b") == ["Times", "-1", ["Power", "a", "-1"], "b"]
# Enclosures of various kinds, i.e. ( ) [ ] [[ ]] { }
assert chain("(a + b) + c") == ["Plus", ["Plus", "a", "b"], "c"]
assert chain(" a + (b + c) + d ") == ["Plus", "a", ["Plus", "b", "c"], "d"]
assert chain("a * (b + c)") == ["Times", "a", ["Plus", "b", "c"]]
assert chain("a b (c d)") == ["Times", "a", "b", ["Times", "c", "d"]]
assert chain("{a, b, 2, c}") == ["List", "a", "b", "2", "c"]
assert chain("{a, {b, c}}") == ["List", "a", ["List", "b", "c"]]
assert chain("{{a}}") == ["List", ["List", "a"]]
assert chain("a[b, c]") == ["a", "b", "c"]
assert chain("a[[b, c]]") == ["Part", "a", "b", "c"]
assert chain("a[b[c]]") == ["a", ["b", "c"]]
assert chain("a[[b, c[[d, {e,f}]]]]") == ["Part", "a", "b", ["Part", "c", "d", ["List", "e", "f"]]]
assert chain("a[b[[c,d]]]") == ["a", ["Part", "b", "c", "d"]]
assert chain("a[[b[c]]]") == ["Part", "a", ["b", "c"]]
assert chain("a[[b[[c]]]]") == ["Part", "a", ["Part", "b", "c"]]
assert chain("a[[b[c[[d]]]]]") == ["Part", "a", ["b", ["Part", "c", "d"]]]
assert chain("a[b[[c[d]]]]") == ["a", ["Part", "b", ["c", "d"]]]
assert chain("x[[a+1, b+2, c+3]]") == ["Part", "x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("x[a+1, b+2, c+3]") == ["x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("{a+1, b+2, c+3}") == ["List", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
# Flat operator:
assert chain("a*b*c*d*e") == ["Times", "a", "b", "c", "d", "e"]
assert chain("a +b + c+ d+e") == ["Plus", "a", "b", "c", "d", "e"]
# Right priority operator:
assert chain("a^b") == ["Power", "a", "b"]
assert chain("a^b^c") == ["Power", "a", ["Power", "b", "c"]]
assert chain("a^b^c^d") == ["Power", "a", ["Power", "b", ["Power", "c", "d"]]]
# Left priority operator:
assert chain("a/.b") == ["ReplaceAll", "a", "b"]
assert chain("a/.b/.c/.d") == ["ReplaceAll", ["ReplaceAll", ["ReplaceAll", "a", "b"], "c"], "d"]
assert chain("a//b") == ["a", "b"]
assert chain("a//b//c") == [["a", "b"], "c"]
assert chain("a//b//c//d") == [[["a", "b"], "c"], "d"]
# Compound expressions
assert chain("a;b") == ["CompoundExpression", "a", "b"]
assert chain("a;") == ["CompoundExpression", "a", "Null"]
assert chain("a;b;") == ["CompoundExpression", "a", "b", "Null"]
assert chain("a[b;c]") == ["a", ["CompoundExpression", "b", "c"]]
assert chain("a[b,c;d,e]") == ["a", "b", ["CompoundExpression", "c", "d"], "e"]
assert chain("a[b,c;,d]") == ["a", "b", ["CompoundExpression", "c", "Null"], "d"]
# New lines
assert chain("a\nb\n") == ["CompoundExpression", "a", "b"]
assert chain("a\n\nb\n (c \nd) \n") == ["CompoundExpression", "a", "b", ["Times", "c", "d"]]
assert chain("\na; b\nc") == ["CompoundExpression", "a", "b", "c"]
assert chain("a + \nb\n") == ["Plus", "a", "b"]
assert chain("a\nb; c; d\n e; (f \n g); h + \n i") == ["CompoundExpression", "a", "b", "c", "d", "e", ["Times", "f", "g"], ["Plus", "h", "i"]]
assert chain("\n{\na\nb; c; d\n e (f \n g); h + \n i\n\n}\n") == ["List", ["CompoundExpression", ["Times", "a", "b"], "c", ["Times", "d", "e", ["Times", "f", "g"]], ["Plus", "h", "i"]]]
# Patterns
assert chain("y_") == ["Pattern", "y", ["Blank"]]
assert chain("y_.") == ["Optional", ["Pattern", "y", ["Blank"]]]
assert chain("y__") == ["Pattern", "y", ["BlankSequence"]]
assert chain("y___") == ["Pattern", "y", ["BlankNullSequence"]]
assert chain("a[b_.,c_]") == ["a", ["Optional", ["Pattern", "b", ["Blank"]]], ["Pattern", "c", ["Blank"]]]
assert chain("b_. c") == ["Times", ["Optional", ["Pattern", "b", ["Blank"]]], "c"]
# Slots for lambda functions
assert chain("#") == ["Slot", "1"]
assert chain("#3") == ["Slot", "3"]
assert chain("#n") == ["Slot", "n"]
assert chain("##") == ["SlotSequence", "1"]
assert chain("##a") == ["SlotSequence", "a"]
# Lambda functions
assert chain("x&") == ["Function", "x"]
assert chain("#&") == ["Function", ["Slot", "1"]]
assert chain("#+3&") == ["Function", ["Plus", ["Slot", "1"], "3"]]
assert chain("#1 + #2&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]]
assert chain("# + #&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "1"]]]
assert chain("#&[x]") == [["Function", ["Slot", "1"]], "x"]
assert chain("#1 + #2 & [x, y]") == [["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]], "x", "y"]
assert chain("#1^2#2^3&") == ["Function", ["Times", ["Power", ["Slot", "1"], "2"], ["Power", ["Slot", "2"], "3"]]]
# Strings inside Mathematica expressions:
assert chain('"abc"') == ["_Str", "abc"]
assert chain('"a\\"b"') == ["_Str", 'a"b']
# This expression does not make sense mathematically, it's just testing the parser:
assert chain('x + "abc" ^ 3') == ["Plus", "x", ["Power", ["_Str", "abc"], "3"]]
assert chain('"a (* b *) c"') == ["_Str", "a (* b *) c"]
assert chain('"a" (* b *) ') == ["_Str", "a"]
assert chain('"a [ b] "') == ["_Str", "a [ b] "]
raises(SyntaxError, lambda: chain('"'))
raises(SyntaxError, lambda: chain('"\\"'))
raises(SyntaxError, lambda: chain('"abc'))
raises(SyntaxError, lambda: chain('"abc\\"def'))
# Invalid expressions:
raises(SyntaxError, lambda: chain("(,"))
raises(SyntaxError, lambda: chain("()"))
raises(SyntaxError, lambda: chain("a (* b"))
def test_parser_mathematica_exp_alt():
parser = MathematicaParser()
convert_chain2 = lambda expr: parser._from_fullformlist_to_fullformsympy(parser._from_fullform_to_fullformlist(expr))
convert_chain3 = lambda expr: parser._from_fullformsympy_to_sympy(convert_chain2(expr))
Sin, Times, Plus, Power = symbols("Sin Times Plus Power", cls=Function)
full_form1 = "Sin[Times[x, y]]"
full_form2 = "Plus[Times[x, y], z]"
full_form3 = "Sin[Times[x, Plus[y, z], Power[w, n]]]]"
assert parser._from_fullform_to_fullformlist(full_form1) == ["Sin", ["Times", "x", "y"]]
assert parser._from_fullform_to_fullformlist(full_form2) == ["Plus", ["Times", "x", "y"], "z"]
assert parser._from_fullform_to_fullformlist(full_form3) == ["Sin", ["Times", "x", ["Plus", "y", "z"], ["Power", "w", "n"]]]
assert convert_chain2(full_form1) == Sin(Times(x, y))
assert convert_chain2(full_form2) == Plus(Times(x, y), z)
assert convert_chain2(full_form3) == Sin(Times(x, Plus(y, z), Power(w, n)))
assert convert_chain3(full_form1) == sin(x*y)
assert convert_chain3(full_form2) == x*y + z
assert convert_chain3(full_form3) == sin(x*(y + z)*w**n)