232 lines
5.9 KiB
Python
232 lines
5.9 KiB
Python
"""
|
|
This module implements Pauli algebra by subclassing Symbol. Only algebraic
|
|
properties of Pauli matrices are used (we do not use the Matrix class).
|
|
|
|
See the documentation to the class Pauli for examples.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Pauli_matrices
|
|
"""
|
|
|
|
from sympy.core.add import Add
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.numbers import I
|
|
from sympy.core.power import Pow
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.physics.quantum import TensorProduct
|
|
|
|
__all__ = ['evaluate_pauli_product']
|
|
|
|
|
|
def delta(i, j):
|
|
"""
|
|
Returns 1 if ``i == j``, else 0.
|
|
|
|
This is used in the multiplication of Pauli matrices.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.paulialgebra import delta
|
|
>>> delta(1, 1)
|
|
1
|
|
>>> delta(2, 3)
|
|
0
|
|
"""
|
|
if i == j:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
def epsilon(i, j, k):
|
|
"""
|
|
Return 1 if i,j,k is equal to (1,2,3), (2,3,1), or (3,1,2);
|
|
-1 if ``i``,``j``,``k`` is equal to (1,3,2), (3,2,1), or (2,1,3);
|
|
else return 0.
|
|
|
|
This is used in the multiplication of Pauli matrices.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.paulialgebra import epsilon
|
|
>>> epsilon(1, 2, 3)
|
|
1
|
|
>>> epsilon(1, 3, 2)
|
|
-1
|
|
"""
|
|
if (i, j, k) in ((1, 2, 3), (2, 3, 1), (3, 1, 2)):
|
|
return 1
|
|
elif (i, j, k) in ((1, 3, 2), (3, 2, 1), (2, 1, 3)):
|
|
return -1
|
|
else:
|
|
return 0
|
|
|
|
|
|
class Pauli(Symbol):
|
|
"""
|
|
The class representing algebraic properties of Pauli matrices.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The symbol used to display the Pauli matrices can be changed with an
|
|
optional parameter ``label="sigma"``. Pauli matrices with different
|
|
``label`` attributes cannot multiply together.
|
|
|
|
If the left multiplication of symbol or number with Pauli matrix is needed,
|
|
please use parentheses to separate Pauli and symbolic multiplication
|
|
(for example: 2*I*(Pauli(3)*Pauli(2))).
|
|
|
|
Another variant is to use evaluate_pauli_product function to evaluate
|
|
the product of Pauli matrices and other symbols (with commutative
|
|
multiply rules).
|
|
|
|
See Also
|
|
========
|
|
|
|
evaluate_pauli_product
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.paulialgebra import Pauli
|
|
>>> Pauli(1)
|
|
sigma1
|
|
>>> Pauli(1)*Pauli(2)
|
|
I*sigma3
|
|
>>> Pauli(1)*Pauli(1)
|
|
1
|
|
>>> Pauli(3)**4
|
|
1
|
|
>>> Pauli(1)*Pauli(2)*Pauli(3)
|
|
I
|
|
|
|
>>> from sympy.physics.paulialgebra import Pauli
|
|
>>> Pauli(1, label="tau")
|
|
tau1
|
|
>>> Pauli(1)*Pauli(2, label="tau")
|
|
sigma1*tau2
|
|
>>> Pauli(1, label="tau")*Pauli(2, label="tau")
|
|
I*tau3
|
|
|
|
>>> from sympy import I
|
|
>>> I*(Pauli(2)*Pauli(3))
|
|
-sigma1
|
|
|
|
>>> from sympy.physics.paulialgebra import evaluate_pauli_product
|
|
>>> f = I*Pauli(2)*Pauli(3)
|
|
>>> f
|
|
I*sigma2*sigma3
|
|
>>> evaluate_pauli_product(f)
|
|
-sigma1
|
|
"""
|
|
|
|
__slots__ = ("i", "label")
|
|
|
|
def __new__(cls, i, label="sigma"):
|
|
if i not in [1, 2, 3]:
|
|
raise IndexError("Invalid Pauli index")
|
|
obj = Symbol.__new__(cls, "%s%d" %(label,i), commutative=False, hermitian=True)
|
|
obj.i = i
|
|
obj.label = label
|
|
return obj
|
|
|
|
def __getnewargs_ex__(self):
|
|
return (self.i, self.label), {}
|
|
|
|
def _hashable_content(self):
|
|
return (self.i, self.label)
|
|
|
|
# FIXME don't work for -I*Pauli(2)*Pauli(3)
|
|
def __mul__(self, other):
|
|
if isinstance(other, Pauli):
|
|
j = self.i
|
|
k = other.i
|
|
jlab = self.label
|
|
klab = other.label
|
|
|
|
if jlab == klab:
|
|
return delta(j, k) \
|
|
+ I*epsilon(j, k, 1)*Pauli(1,jlab) \
|
|
+ I*epsilon(j, k, 2)*Pauli(2,jlab) \
|
|
+ I*epsilon(j, k, 3)*Pauli(3,jlab)
|
|
return super().__mul__(other)
|
|
|
|
def _eval_power(b, e):
|
|
if e.is_Integer and e.is_positive:
|
|
return super().__pow__(int(e) % 2)
|
|
|
|
|
|
def evaluate_pauli_product(arg):
|
|
'''Help function to evaluate Pauli matrices product
|
|
with symbolic objects.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
arg: symbolic expression that contains Paulimatrices
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product
|
|
>>> from sympy import I
|
|
>>> evaluate_pauli_product(I*Pauli(1)*Pauli(2))
|
|
-sigma3
|
|
|
|
>>> from sympy.abc import x
|
|
>>> evaluate_pauli_product(x**2*Pauli(2)*Pauli(1))
|
|
-I*x**2*sigma3
|
|
'''
|
|
start = arg
|
|
end = arg
|
|
|
|
if isinstance(arg, Pow) and isinstance(arg.args[0], Pauli):
|
|
if arg.args[1].is_odd:
|
|
return arg.args[0]
|
|
else:
|
|
return 1
|
|
|
|
if isinstance(arg, Add):
|
|
return Add(*[evaluate_pauli_product(part) for part in arg.args])
|
|
|
|
if isinstance(arg, TensorProduct):
|
|
return TensorProduct(*[evaluate_pauli_product(part) for part in arg.args])
|
|
|
|
elif not(isinstance(arg, Mul)):
|
|
return arg
|
|
|
|
while not start == end or start == arg and end == arg:
|
|
start = end
|
|
|
|
tmp = start.as_coeff_mul()
|
|
sigma_product = 1
|
|
com_product = 1
|
|
keeper = 1
|
|
|
|
for el in tmp[1]:
|
|
if isinstance(el, Pauli):
|
|
sigma_product *= el
|
|
elif not el.is_commutative:
|
|
if isinstance(el, Pow) and isinstance(el.args[0], Pauli):
|
|
if el.args[1].is_odd:
|
|
sigma_product *= el.args[0]
|
|
elif isinstance(el, TensorProduct):
|
|
keeper = keeper*sigma_product*\
|
|
TensorProduct(
|
|
*[evaluate_pauli_product(part) for part in el.args]
|
|
)
|
|
sigma_product = 1
|
|
else:
|
|
keeper = keeper*sigma_product*el
|
|
sigma_product = 1
|
|
else:
|
|
com_product *= el
|
|
end = tmp[0]*keeper*sigma_product*com_product
|
|
if end == arg: break
|
|
return end
|