Traktor/myenv/Lib/site-packages/sympy/physics/quantum/circuitutils.py
2024-05-26 05:12:46 +02:00

489 lines
14 KiB
Python

"""Primitive circuit operations on quantum circuits."""
from functools import reduce
from sympy.core.sorting import default_sort_key
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.utilities import numbered_symbols
from sympy.physics.quantum.gate import Gate
__all__ = [
'kmp_table',
'find_subcircuit',
'replace_subcircuit',
'convert_to_symbolic_indices',
'convert_to_real_indices',
'random_reduce',
'random_insert'
]
def kmp_table(word):
"""Build the 'partial match' table of the Knuth-Morris-Pratt algorithm.
Note: This is applicable to strings or
quantum circuits represented as tuples.
"""
# Current position in subcircuit
pos = 2
# Beginning position of candidate substring that
# may reappear later in word
cnd = 0
# The 'partial match' table that helps one determine
# the next location to start substring search
table = []
table.append(-1)
table.append(0)
while pos < len(word):
if word[pos - 1] == word[cnd]:
cnd = cnd + 1
table.append(cnd)
pos = pos + 1
elif cnd > 0:
cnd = table[cnd]
else:
table.append(0)
pos = pos + 1
return table
def find_subcircuit(circuit, subcircuit, start=0, end=0):
"""Finds the subcircuit in circuit, if it exists.
Explanation
===========
If the subcircuit exists, the index of the start of
the subcircuit in circuit is returned; otherwise,
-1 is returned. The algorithm that is implemented
is the Knuth-Morris-Pratt algorithm.
Parameters
==========
circuit : tuple, Gate or Mul
A tuple of Gates or Mul representing a quantum circuit
subcircuit : tuple, Gate or Mul
A tuple of Gates or Mul to find in circuit
start : int
The location to start looking for subcircuit.
If start is the same or past end, -1 is returned.
end : int
The last place to look for a subcircuit. If end
is less than 1 (one), then the length of circuit
is taken to be end.
Examples
========
Find the first instance of a subcircuit:
>>> from sympy.physics.quantum.circuitutils import find_subcircuit
>>> from sympy.physics.quantum.gate import X, Y, Z, H
>>> circuit = X(0)*Z(0)*Y(0)*H(0)
>>> subcircuit = Z(0)*Y(0)
>>> find_subcircuit(circuit, subcircuit)
1
Find the first instance starting at a specific position:
>>> find_subcircuit(circuit, subcircuit, start=1)
1
>>> find_subcircuit(circuit, subcircuit, start=2)
-1
>>> circuit = circuit*subcircuit
>>> find_subcircuit(circuit, subcircuit, start=2)
4
Find the subcircuit within some interval:
>>> find_subcircuit(circuit, subcircuit, start=2, end=2)
-1
"""
if isinstance(circuit, Mul):
circuit = circuit.args
if isinstance(subcircuit, Mul):
subcircuit = subcircuit.args
if len(subcircuit) == 0 or len(subcircuit) > len(circuit):
return -1
if end < 1:
end = len(circuit)
# Location in circuit
pos = start
# Location in the subcircuit
index = 0
# 'Partial match' table
table = kmp_table(subcircuit)
while (pos + index) < end:
if subcircuit[index] == circuit[pos + index]:
index = index + 1
else:
pos = pos + index - table[index]
index = table[index] if table[index] > -1 else 0
if index == len(subcircuit):
return pos
return -1
def replace_subcircuit(circuit, subcircuit, replace=None, pos=0):
"""Replaces a subcircuit with another subcircuit in circuit,
if it exists.
Explanation
===========
If multiple instances of subcircuit exists, the first instance is
replaced. The position to being searching from (if different from
0) may be optionally given. If subcircuit cannot be found, circuit
is returned.
Parameters
==========
circuit : tuple, Gate or Mul
A quantum circuit.
subcircuit : tuple, Gate or Mul
The circuit to be replaced.
replace : tuple, Gate or Mul
The replacement circuit.
pos : int
The location to start search and replace
subcircuit, if it exists. This may be used
if it is known beforehand that multiple
instances exist, and it is desirable to
replace a specific instance. If a negative number
is given, pos will be defaulted to 0.
Examples
========
Find and remove the subcircuit:
>>> from sympy.physics.quantum.circuitutils import replace_subcircuit
>>> from sympy.physics.quantum.gate import X, Y, Z, H
>>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0)
>>> subcircuit = Z(0)*Y(0)
>>> replace_subcircuit(circuit, subcircuit)
(X(0), H(0), X(0), H(0), Y(0))
Remove the subcircuit given a starting search point:
>>> replace_subcircuit(circuit, subcircuit, pos=1)
(X(0), H(0), X(0), H(0), Y(0))
>>> replace_subcircuit(circuit, subcircuit, pos=2)
(X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0))
Replace the subcircuit:
>>> replacement = H(0)*Z(0)
>>> replace_subcircuit(circuit, subcircuit, replace=replacement)
(X(0), H(0), Z(0), H(0), X(0), H(0), Y(0))
"""
if pos < 0:
pos = 0
if isinstance(circuit, Mul):
circuit = circuit.args
if isinstance(subcircuit, Mul):
subcircuit = subcircuit.args
if isinstance(replace, Mul):
replace = replace.args
elif replace is None:
replace = ()
# Look for the subcircuit starting at pos
loc = find_subcircuit(circuit, subcircuit, start=pos)
# If subcircuit was found
if loc > -1:
# Get the gates to the left of subcircuit
left = circuit[0:loc]
# Get the gates to the right of subcircuit
right = circuit[loc + len(subcircuit):len(circuit)]
# Recombine the left and right side gates into a circuit
circuit = left + replace + right
return circuit
def _sympify_qubit_map(mapping):
new_map = {}
for key in mapping:
new_map[key] = sympify(mapping[key])
return new_map
def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None):
"""Returns the circuit with symbolic indices and the
dictionary mapping symbolic indices to real indices.
The mapping is 1 to 1 and onto (bijective).
Parameters
==========
seq : tuple, Gate/Integer/tuple or Mul
A tuple of Gate, Integer, or tuple objects, or a Mul
start : Symbol
An optional starting symbolic index
gen : object
An optional numbered symbol generator
qubit_map : dict
An existing mapping of symbolic indices to real indices
All symbolic indices have the format 'i#', where # is
some number >= 0.
"""
if isinstance(seq, Mul):
seq = seq.args
# A numbered symbol generator
index_gen = numbered_symbols(prefix='i', start=-1)
cur_ndx = next(index_gen)
# keys are symbolic indices; values are real indices
ndx_map = {}
def create_inverse_map(symb_to_real_map):
rev_items = lambda item: (item[1], item[0])
return dict(map(rev_items, symb_to_real_map.items()))
if start is not None:
if not isinstance(start, Symbol):
msg = 'Expected Symbol for starting index, got %r.' % start
raise TypeError(msg)
cur_ndx = start
if gen is not None:
if not isinstance(gen, numbered_symbols().__class__):
msg = 'Expected a generator, got %r.' % gen
raise TypeError(msg)
index_gen = gen
if qubit_map is not None:
if not isinstance(qubit_map, dict):
msg = ('Expected dict for existing map, got ' +
'%r.' % qubit_map)
raise TypeError(msg)
ndx_map = qubit_map
ndx_map = _sympify_qubit_map(ndx_map)
# keys are real indices; keys are symbolic indices
inv_map = create_inverse_map(ndx_map)
sym_seq = ()
for item in seq:
# Nested items, so recurse
if isinstance(item, Gate):
result = convert_to_symbolic_indices(item.args,
qubit_map=ndx_map,
start=cur_ndx,
gen=index_gen)
sym_item, new_map, cur_ndx, index_gen = result
ndx_map.update(new_map)
inv_map = create_inverse_map(ndx_map)
elif isinstance(item, (tuple, Tuple)):
result = convert_to_symbolic_indices(item,
qubit_map=ndx_map,
start=cur_ndx,
gen=index_gen)
sym_item, new_map, cur_ndx, index_gen = result
ndx_map.update(new_map)
inv_map = create_inverse_map(ndx_map)
elif item in inv_map:
sym_item = inv_map[item]
else:
cur_ndx = next(gen)
ndx_map[cur_ndx] = item
inv_map[item] = cur_ndx
sym_item = cur_ndx
if isinstance(item, Gate):
sym_item = item.__class__(*sym_item)
sym_seq = sym_seq + (sym_item,)
return sym_seq, ndx_map, cur_ndx, index_gen
def convert_to_real_indices(seq, qubit_map):
"""Returns the circuit with real indices.
Parameters
==========
seq : tuple, Gate/Integer/tuple or Mul
A tuple of Gate, Integer, or tuple objects or a Mul
qubit_map : dict
A dictionary mapping symbolic indices to real indices.
Examples
========
Change the symbolic indices to real integers:
>>> from sympy import symbols
>>> from sympy.physics.quantum.circuitutils import convert_to_real_indices
>>> from sympy.physics.quantum.gate import X, Y, H
>>> i0, i1 = symbols('i:2')
>>> index_map = {i0 : 0, i1 : 1}
>>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map)
(X(0), Y(1), H(0), X(1))
"""
if isinstance(seq, Mul):
seq = seq.args
if not isinstance(qubit_map, dict):
msg = 'Expected dict for qubit_map, got %r.' % qubit_map
raise TypeError(msg)
qubit_map = _sympify_qubit_map(qubit_map)
real_seq = ()
for item in seq:
# Nested items, so recurse
if isinstance(item, Gate):
real_item = convert_to_real_indices(item.args, qubit_map)
elif isinstance(item, (tuple, Tuple)):
real_item = convert_to_real_indices(item, qubit_map)
else:
real_item = qubit_map[item]
if isinstance(item, Gate):
real_item = item.__class__(*real_item)
real_seq = real_seq + (real_item,)
return real_seq
def random_reduce(circuit, gate_ids, seed=None):
"""Shorten the length of a quantum circuit.
Explanation
===========
random_reduce looks for circuit identities in circuit, randomly chooses
one to remove, and returns a shorter yet equivalent circuit. If no
identities are found, the same circuit is returned.
Parameters
==========
circuit : Gate tuple of Mul
A tuple of Gates representing a quantum circuit
gate_ids : list, GateIdentity
List of gate identities to find in circuit
seed : int or list
seed used for _randrange; to override the random selection, provide a
list of integers: the elements of gate_ids will be tested in the order
given by the list
"""
from sympy.core.random import _randrange
if not gate_ids:
return circuit
if isinstance(circuit, Mul):
circuit = circuit.args
ids = flatten_ids(gate_ids)
# Create the random integer generator with the seed
randrange = _randrange(seed)
# Look for an identity in the circuit
while ids:
i = randrange(len(ids))
id = ids.pop(i)
if find_subcircuit(circuit, id) != -1:
break
else:
# no identity was found
return circuit
# return circuit with the identity removed
return replace_subcircuit(circuit, id)
def random_insert(circuit, choices, seed=None):
"""Insert a circuit into another quantum circuit.
Explanation
===========
random_insert randomly chooses a location in the circuit to insert
a randomly selected circuit from amongst the given choices.
Parameters
==========
circuit : Gate tuple or Mul
A tuple or Mul of Gates representing a quantum circuit
choices : list
Set of circuit choices
seed : int or list
seed used for _randrange; to override the random selections, give
a list two integers, [i, j] where i is the circuit location where
choice[j] will be inserted.
Notes
=====
Indices for insertion should be [0, n] if n is the length of the
circuit.
"""
from sympy.core.random import _randrange
if not choices:
return circuit
if isinstance(circuit, Mul):
circuit = circuit.args
# get the location in the circuit and the element to insert from choices
randrange = _randrange(seed)
loc = randrange(len(circuit) + 1)
choice = choices[randrange(len(choices))]
circuit = list(circuit)
circuit[loc: loc] = choice
return tuple(circuit)
# Flatten the GateIdentity objects (with gate rules) into one single list
def flatten_ids(ids):
collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids,
key=default_sort_key)
ids = reduce(collapse, ids, [])
ids.sort(key=default_sort_key)
return ids