213 lines
5.6 KiB
Python
213 lines
5.6 KiB
Python
from sympy.core import S
|
|
from sympy.polys import Poly
|
|
|
|
|
|
def dispersionset(p, q=None, *gens, **args):
|
|
r"""Compute the *dispersion set* of two polynomials.
|
|
|
|
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
|
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:
|
|
|
|
.. math::
|
|
\operatorname{J}(f, g)
|
|
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
|
|
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}
|
|
|
|
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import poly
|
|
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
|
>>> from sympy.abc import x
|
|
|
|
Dispersion set and dispersion of a simple polynomial:
|
|
|
|
>>> fp = poly((x - 3)*(x + 3), x)
|
|
>>> sorted(dispersionset(fp))
|
|
[0, 6]
|
|
>>> dispersion(fp)
|
|
6
|
|
|
|
Note that the definition of the dispersion is not symmetric:
|
|
|
|
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
|
>>> gp = fp.shift(-3)
|
|
>>> sorted(dispersionset(fp, gp))
|
|
[2, 3, 4]
|
|
>>> dispersion(fp, gp)
|
|
4
|
|
>>> sorted(dispersionset(gp, fp))
|
|
[]
|
|
>>> dispersion(gp, fp)
|
|
-oo
|
|
|
|
Computing the dispersion also works over field extensions:
|
|
|
|
>>> from sympy import sqrt
|
|
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
|
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
|
>>> sorted(dispersionset(fp, gp))
|
|
[2]
|
|
>>> sorted(dispersionset(gp, fp))
|
|
[1, 4]
|
|
|
|
We can even perform the computations for polynomials
|
|
having symbolic coefficients:
|
|
|
|
>>> from sympy.abc import a
|
|
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
|
>>> sorted(dispersionset(fp))
|
|
[0, 1]
|
|
|
|
See Also
|
|
========
|
|
|
|
dispersion
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] [ManWright94]_
|
|
.. [2] [Koepf98]_
|
|
.. [3] [Abramov71]_
|
|
.. [4] [Man93]_
|
|
"""
|
|
# Check for valid input
|
|
same = False if q is not None else True
|
|
if same:
|
|
q = p
|
|
|
|
p = Poly(p, *gens, **args)
|
|
q = Poly(q, *gens, **args)
|
|
|
|
if not p.is_univariate or not q.is_univariate:
|
|
raise ValueError("Polynomials need to be univariate")
|
|
|
|
# The generator
|
|
if not p.gen == q.gen:
|
|
raise ValueError("Polynomials must have the same generator")
|
|
gen = p.gen
|
|
|
|
# We define the dispersion of constant polynomials to be zero
|
|
if p.degree() < 1 or q.degree() < 1:
|
|
return {0}
|
|
|
|
# Factor p and q over the rationals
|
|
fp = p.factor_list()
|
|
fq = q.factor_list() if not same else fp
|
|
|
|
# Iterate over all pairs of factors
|
|
J = set()
|
|
for s, unused in fp[1]:
|
|
for t, unused in fq[1]:
|
|
m = s.degree()
|
|
n = t.degree()
|
|
if n != m:
|
|
continue
|
|
an = s.LC()
|
|
bn = t.LC()
|
|
if not (an - bn).is_zero:
|
|
continue
|
|
# Note that the roles of `s` and `t` below are switched
|
|
# w.r.t. the original paper. This is for consistency
|
|
# with the description in the book of W. Koepf.
|
|
anm1 = s.coeff_monomial(gen**(m-1))
|
|
bnm1 = t.coeff_monomial(gen**(n-1))
|
|
alpha = (anm1 - bnm1) / S(n*bn)
|
|
if not alpha.is_integer:
|
|
continue
|
|
if alpha < 0 or alpha in J:
|
|
continue
|
|
if n > 1 and not (s - t.shift(alpha)).is_zero:
|
|
continue
|
|
J.add(alpha)
|
|
|
|
return J
|
|
|
|
|
|
def dispersion(p, q=None, *gens, **args):
|
|
r"""Compute the *dispersion* of polynomials.
|
|
|
|
For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
|
|
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:
|
|
|
|
.. math::
|
|
\operatorname{dis}(f, g)
|
|
& := \max\{ J(f,g) \cup \{0\} \} \\
|
|
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}
|
|
|
|
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.
|
|
Note that we make the definition `\max\{\} := -\infty`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import poly
|
|
>>> from sympy.polys.dispersion import dispersion, dispersionset
|
|
>>> from sympy.abc import x
|
|
|
|
Dispersion set and dispersion of a simple polynomial:
|
|
|
|
>>> fp = poly((x - 3)*(x + 3), x)
|
|
>>> sorted(dispersionset(fp))
|
|
[0, 6]
|
|
>>> dispersion(fp)
|
|
6
|
|
|
|
Note that the definition of the dispersion is not symmetric:
|
|
|
|
>>> fp = poly(x**4 - 3*x**2 + 1, x)
|
|
>>> gp = fp.shift(-3)
|
|
>>> sorted(dispersionset(fp, gp))
|
|
[2, 3, 4]
|
|
>>> dispersion(fp, gp)
|
|
4
|
|
>>> sorted(dispersionset(gp, fp))
|
|
[]
|
|
>>> dispersion(gp, fp)
|
|
-oo
|
|
|
|
The maximum of an empty set is defined to be `-\infty`
|
|
as seen in this example.
|
|
|
|
Computing the dispersion also works over field extensions:
|
|
|
|
>>> from sympy import sqrt
|
|
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
|
|
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
|
|
>>> sorted(dispersionset(fp, gp))
|
|
[2]
|
|
>>> sorted(dispersionset(gp, fp))
|
|
[1, 4]
|
|
|
|
We can even perform the computations for polynomials
|
|
having symbolic coefficients:
|
|
|
|
>>> from sympy.abc import a
|
|
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
|
|
>>> sorted(dispersionset(fp))
|
|
[0, 1]
|
|
|
|
See Also
|
|
========
|
|
|
|
dispersionset
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] [ManWright94]_
|
|
.. [2] [Koepf98]_
|
|
.. [3] [Abramov71]_
|
|
.. [4] [Man93]_
|
|
"""
|
|
J = dispersionset(p, q, *gens, **args)
|
|
if not J:
|
|
# Definition for maximum of empty set
|
|
j = S.NegativeInfinity
|
|
else:
|
|
j = max(J)
|
|
return j
|