Traktor/myenv/Lib/site-packages/sympy/polys/factortools.py
2024-05-26 05:12:46 +02:00

1503 lines
38 KiB
Python

"""Polynomial factorization routines in characteristic zero. """
from sympy.core.random import _randint
from sympy.polys.galoistools import (
gf_from_int_poly, gf_to_int_poly,
gf_lshift, gf_add_mul, gf_mul,
gf_div, gf_rem,
gf_gcdex,
gf_sqf_p,
gf_factor_sqf, gf_factor)
from sympy.polys.densebasic import (
dup_LC, dmp_LC, dmp_ground_LC,
dup_TC,
dup_convert, dmp_convert,
dup_degree, dmp_degree,
dmp_degree_in, dmp_degree_list,
dmp_from_dict,
dmp_zero_p,
dmp_one,
dmp_nest, dmp_raise,
dup_strip,
dmp_ground,
dup_inflate,
dmp_exclude, dmp_include,
dmp_inject, dmp_eject,
dup_terms_gcd, dmp_terms_gcd)
from sympy.polys.densearith import (
dup_neg, dmp_neg,
dup_add, dmp_add,
dup_sub, dmp_sub,
dup_mul, dmp_mul,
dup_sqr,
dmp_pow,
dup_div, dmp_div,
dup_quo, dmp_quo,
dmp_expand,
dmp_add_mul,
dup_sub_mul, dmp_sub_mul,
dup_lshift,
dup_max_norm, dmp_max_norm,
dup_l1_norm,
dup_mul_ground, dmp_mul_ground,
dup_quo_ground, dmp_quo_ground)
from sympy.polys.densetools import (
dup_clear_denoms, dmp_clear_denoms,
dup_trunc, dmp_ground_trunc,
dup_content,
dup_monic, dmp_ground_monic,
dup_primitive, dmp_ground_primitive,
dmp_eval_tail,
dmp_eval_in, dmp_diff_eval_in,
dmp_compose,
dup_shift, dup_mirror)
from sympy.polys.euclidtools import (
dmp_primitive,
dup_inner_gcd, dmp_inner_gcd)
from sympy.polys.sqfreetools import (
dup_sqf_p,
dup_sqf_norm, dmp_sqf_norm,
dup_sqf_part, dmp_sqf_part)
from sympy.polys.polyutils import _sort_factors
from sympy.polys.polyconfig import query
from sympy.polys.polyerrors import (
ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed)
from sympy.utilities import subsets
from math import ceil as _ceil, log as _log
def dup_trial_division(f, factors, K):
"""
Determine multiplicities of factors for a univariate polynomial
using trial division.
"""
result = []
for factor in factors:
k = 0
while True:
q, r = dup_div(f, factor, K)
if not r:
f, k = q, k + 1
else:
break
result.append((factor, k))
return _sort_factors(result)
def dmp_trial_division(f, factors, u, K):
"""
Determine multiplicities of factors for a multivariate polynomial
using trial division.
"""
result = []
for factor in factors:
k = 0
while True:
q, r = dmp_div(f, factor, u, K)
if dmp_zero_p(r, u):
f, k = q, k + 1
else:
break
result.append((factor, k))
return _sort_factors(result)
def dup_zz_mignotte_bound(f, K):
"""
The Knuth-Cohen variant of Mignotte bound for
univariate polynomials in `K[x]`.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**3 + 14*x**2 + 56*x + 64
>>> R.dup_zz_mignotte_bound(f)
152
By checking `factor(f)` we can see that max coeff is 8
Also consider a case that `f` is irreducible for example `f = 2*x**2 + 3*x + 4`
To avoid a bug for these cases, we return the bound plus the max coefficient of `f`
>>> f = 2*x**2 + 3*x + 4
>>> R.dup_zz_mignotte_bound(f)
6
Lastly,To see the difference between the new and the old Mignotte bound
consider the irreducible polynomial::
>>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26
>>> R.dup_zz_mignotte_bound(f)
744
The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664.
References
==========
..[1] [Abbott2013]_
"""
from sympy.functions.combinatorial.factorials import binomial
d = dup_degree(f)
delta = _ceil(d / 2)
delta2 = _ceil(delta / 2)
# euclidean-norm
eucl_norm = K.sqrt( sum( [cf**2 for cf in f] ) )
# biggest values of binomial coefficients (p. 538 of reference)
t1 = binomial(delta - 1, delta2)
t2 = binomial(delta - 1, delta2 - 1)
lc = K.abs(dup_LC(f, K)) # leading coefficient
bound = t1 * eucl_norm + t2 * lc # (p. 538 of reference)
bound += dup_max_norm(f, K) # add max coeff for irreducible polys
bound = _ceil(bound / 2) * 2 # round up to even integer
return bound
def dmp_zz_mignotte_bound(f, u, K):
"""Mignotte bound for multivariate polynomials in `K[X]`. """
a = dmp_max_norm(f, u, K)
b = abs(dmp_ground_LC(f, u, K))
n = sum(dmp_degree_list(f, u))
return K.sqrt(K(n + 1))*2**n*a*b
def dup_zz_hensel_step(m, f, g, h, s, t, K):
"""
One step in Hensel lifting in `Z[x]`.
Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
and `t` such that::
f = g*h (mod m)
s*g + t*h = 1 (mod m)
lc(f) is not a zero divisor (mod m)
lc(h) = 1
deg(f) = deg(g) + deg(h)
deg(s) < deg(h)
deg(t) < deg(g)
returns polynomials `G`, `H`, `S` and `T`, such that::
f = G*H (mod m**2)
S*G + T*H = 1 (mod m**2)
References
==========
.. [1] [Gathen99]_
"""
M = m**2
e = dup_sub_mul(f, g, h, K)
e = dup_trunc(e, M, K)
q, r = dup_div(dup_mul(s, e, K), h, K)
q = dup_trunc(q, M, K)
r = dup_trunc(r, M, K)
u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
G = dup_trunc(dup_add(g, u, K), M, K)
H = dup_trunc(dup_add(h, r, K), M, K)
u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
b = dup_trunc(dup_sub(u, [K.one], K), M, K)
c, d = dup_div(dup_mul(s, b, K), H, K)
c = dup_trunc(c, M, K)
d = dup_trunc(d, M, K)
u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
S = dup_trunc(dup_sub(s, d, K), M, K)
T = dup_trunc(dup_sub(t, u, K), M, K)
return G, H, S, T
def dup_zz_hensel_lift(p, f, f_list, l, K):
r"""
Multifactor Hensel lifting in `Z[x]`.
Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)`
is a unit modulo `p`, monic pair-wise coprime polynomials `f_i`
over `Z[x]` satisfying::
f = lc(f) f_1 ... f_r (mod p)
and a positive integer `l`, returns a list of monic polynomials
`F_1,\ F_2,\ \dots,\ F_r` satisfying::
f = lc(f) F_1 ... F_r (mod p**l)
F_i = f_i (mod p), i = 1..r
References
==========
.. [1] [Gathen99]_
"""
r = len(f_list)
lc = dup_LC(f, K)
if r == 1:
F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K)
return [ dup_trunc(F, p**l, K) ]
m = p
k = r // 2
d = int(_ceil(_log(l, 2)))
g = gf_from_int_poly([lc], p)
for f_i in f_list[:k]:
g = gf_mul(g, gf_from_int_poly(f_i, p), p, K)
h = gf_from_int_poly(f_list[k], p)
for f_i in f_list[k + 1:]:
h = gf_mul(h, gf_from_int_poly(f_i, p), p, K)
s, t, _ = gf_gcdex(g, h, p, K)
g = gf_to_int_poly(g, p)
h = gf_to_int_poly(h, p)
s = gf_to_int_poly(s, p)
t = gf_to_int_poly(t, p)
for _ in range(1, d + 1):
(g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2
return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \
+ dup_zz_hensel_lift(p, h, f_list[k:], l, K)
def _test_pl(fc, q, pl):
if q > pl // 2:
q = q - pl
if not q:
return True
return fc % q == 0
def dup_zz_zassenhaus(f, K):
"""Factor primitive square-free polynomials in `Z[x]`. """
n = dup_degree(f)
if n == 1:
return [f]
from sympy.ntheory import isprime
fc = f[-1]
A = dup_max_norm(f, K)
b = dup_LC(f, K)
B = int(abs(K.sqrt(K(n + 1))*2**n*A*b))
C = int((n + 1)**(2*n)*A**(2*n - 1))
gamma = int(_ceil(2*_log(C, 2)))
bound = int(2*gamma*_log(gamma))
a = []
# choose a prime number `p` such that `f` be square free in Z_p
# if there are many factors in Z_p, choose among a few different `p`
# the one with fewer factors
for px in range(3, bound + 1):
if not isprime(px) or b % px == 0:
continue
px = K.convert(px)
F = gf_from_int_poly(f, px)
if not gf_sqf_p(F, px, K):
continue
fsqfx = gf_factor_sqf(F, px, K)[1]
a.append((px, fsqfx))
if len(fsqfx) < 15 or len(a) > 4:
break
p, fsqf = min(a, key=lambda x: len(x[1]))
l = int(_ceil(_log(2*B + 1, p)))
modular = [gf_to_int_poly(ff, p) for ff in fsqf]
g = dup_zz_hensel_lift(p, f, modular, l, K)
sorted_T = range(len(g))
T = set(sorted_T)
factors, s = [], 1
pl = p**l
while 2*s <= len(T):
for S in subsets(sorted_T, s):
# lift the constant coefficient of the product `G` of the factors
# in the subset `S`; if it is does not divide `fc`, `G` does
# not divide the input polynomial
if b == 1:
q = 1
for i in S:
q = q*g[i][-1]
q = q % pl
if not _test_pl(fc, q, pl):
continue
else:
G = [b]
for i in S:
G = dup_mul(G, g[i], K)
G = dup_trunc(G, pl, K)
G = dup_primitive(G, K)[1]
q = G[-1]
if q and fc % q != 0:
continue
H = [b]
S = set(S)
T_S = T - S
if b == 1:
G = [b]
for i in S:
G = dup_mul(G, g[i], K)
G = dup_trunc(G, pl, K)
for i in T_S:
H = dup_mul(H, g[i], K)
H = dup_trunc(H, pl, K)
G_norm = dup_l1_norm(G, K)
H_norm = dup_l1_norm(H, K)
if G_norm*H_norm <= B:
T = T_S
sorted_T = [i for i in sorted_T if i not in S]
G = dup_primitive(G, K)[1]
f = dup_primitive(H, K)[1]
factors.append(G)
b = dup_LC(f, K)
break
else:
s += 1
return factors + [f]
def dup_zz_irreducible_p(f, K):
"""Test irreducibility using Eisenstein's criterion. """
lc = dup_LC(f, K)
tc = dup_TC(f, K)
e_fc = dup_content(f[1:], K)
if e_fc:
from sympy.ntheory import factorint
e_ff = factorint(int(e_fc))
for p in e_ff.keys():
if (lc % p) and (tc % p**2):
return True
def dup_cyclotomic_p(f, K, irreducible=False):
"""
Efficiently test if ``f`` is a cyclotomic polynomial.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1
>>> R.dup_cyclotomic_p(f)
False
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1
>>> R.dup_cyclotomic_p(g)
True
References
==========
Bradford, Russell J., and James H. Davenport. "Effective tests for
cyclotomic polynomials." In International Symposium on Symbolic and
Algebraic Computation, pp. 244-251. Springer, Berlin, Heidelberg, 1988.
"""
if K.is_QQ:
try:
K0, K = K, K.get_ring()
f = dup_convert(f, K0, K)
except CoercionFailed:
return False
elif not K.is_ZZ:
return False
lc = dup_LC(f, K)
tc = dup_TC(f, K)
if lc != 1 or (tc != -1 and tc != 1):
return False
if not irreducible:
coeff, factors = dup_factor_list(f, K)
if coeff != K.one or factors != [(f, 1)]:
return False
n = dup_degree(f)
g, h = [], []
for i in range(n, -1, -2):
g.insert(0, f[i])
for i in range(n - 1, -1, -2):
h.insert(0, f[i])
g = dup_sqr(dup_strip(g), K)
h = dup_sqr(dup_strip(h), K)
F = dup_sub(g, dup_lshift(h, 1, K), K)
if K.is_negative(dup_LC(F, K)):
F = dup_neg(F, K)
if F == f:
return True
g = dup_mirror(f, K)
if K.is_negative(dup_LC(g, K)):
g = dup_neg(g, K)
if F == g and dup_cyclotomic_p(g, K):
return True
G = dup_sqf_part(F, K)
if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
return True
return False
def dup_zz_cyclotomic_poly(n, K):
"""Efficiently generate n-th cyclotomic polynomial. """
from sympy.ntheory import factorint
h = [K.one, -K.one]
for p, k in factorint(n).items():
h = dup_quo(dup_inflate(h, p, K), h, K)
h = dup_inflate(h, p**(k - 1), K)
return h
def _dup_cyclotomic_decompose(n, K):
from sympy.ntheory import factorint
H = [[K.one, -K.one]]
for p, k in factorint(n).items():
Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ]
H.extend(Q)
for i in range(1, k):
Q = [ dup_inflate(q, p, K) for q in Q ]
H.extend(Q)
return H
def dup_zz_cyclotomic_factor(f, K):
"""
Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`.
Given a univariate polynomial `f` in `Z[x]` returns a list of factors
of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for
`n >= 1`. Otherwise returns None.
Factorization is performed using cyclotomic decomposition of `f`,
which makes this method much faster that any other direct factorization
approach (e.g. Zassenhaus's).
References
==========
.. [1] [Weisstein09]_
"""
lc_f, tc_f = dup_LC(f, K), dup_TC(f, K)
if dup_degree(f) <= 0:
return None
if lc_f != 1 or tc_f not in [-1, 1]:
return None
if any(bool(cf) for cf in f[1:-1]):
return None
n = dup_degree(f)
F = _dup_cyclotomic_decompose(n, K)
if not K.is_one(tc_f):
return F
else:
H = []
for h in _dup_cyclotomic_decompose(2*n, K):
if h not in F:
H.append(h)
return H
def dup_zz_factor_sqf(f, K):
"""Factor square-free (non-primitive) polynomials in `Z[x]`. """
cont, g = dup_primitive(f, K)
n = dup_degree(g)
if dup_LC(g, K) < 0:
cont, g = -cont, dup_neg(g, K)
if n <= 0:
return cont, []
elif n == 1:
return cont, [g]
if query('USE_IRREDUCIBLE_IN_FACTOR'):
if dup_zz_irreducible_p(g, K):
return cont, [g]
factors = None
if query('USE_CYCLOTOMIC_FACTOR'):
factors = dup_zz_cyclotomic_factor(g, K)
if factors is None:
factors = dup_zz_zassenhaus(g, K)
return cont, _sort_factors(factors, multiple=False)
def dup_zz_factor(f, K):
"""
Factor (non square-free) polynomials in `Z[x]`.
Given a univariate polynomial `f` in `Z[x]` computes its complete
factorization `f_1, ..., f_n` into irreducibles over integers::
f = content(f) f_1**k_1 ... f_n**k_n
The factorization is computed by reducing the input polynomial
into a primitive square-free polynomial and factoring it using
Zassenhaus algorithm. Trial division is used to recover the
multiplicities of factors.
The result is returned as a tuple consisting of::
(content(f), [(f_1, k_1), ..., (f_n, k_n))
Examples
========
Consider the polynomial `f = 2*x**4 - 2`::
>>> from sympy.polys import ring, ZZ
>>> R, x = ring("x", ZZ)
>>> R.dup_zz_factor(2*x**4 - 2)
(2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)])
In result we got the following factorization::
f = 2 (x - 1) (x + 1) (x**2 + 1)
Note that this is a complete factorization over integers,
however over Gaussian integers we can factor the last term.
By default, polynomials `x**n - 1` and `x**n + 1` are factored
using cyclotomic decomposition to speedup computations. To
disable this behaviour set cyclotomic=False.
References
==========
.. [1] [Gathen99]_
"""
cont, g = dup_primitive(f, K)
n = dup_degree(g)
if dup_LC(g, K) < 0:
cont, g = -cont, dup_neg(g, K)
if n <= 0:
return cont, []
elif n == 1:
return cont, [(g, 1)]
if query('USE_IRREDUCIBLE_IN_FACTOR'):
if dup_zz_irreducible_p(g, K):
return cont, [(g, 1)]
g = dup_sqf_part(g, K)
H = None
if query('USE_CYCLOTOMIC_FACTOR'):
H = dup_zz_cyclotomic_factor(g, K)
if H is None:
H = dup_zz_zassenhaus(g, K)
factors = dup_trial_division(f, H, K)
return cont, factors
def dmp_zz_wang_non_divisors(E, cs, ct, K):
"""Wang/EEZ: Compute a set of valid divisors. """
result = [ cs*ct ]
for q in E:
q = abs(q)
for r in reversed(result):
while r != 1:
r = K.gcd(r, q)
q = q // r
if K.is_one(q):
return None
result.append(q)
return result[1:]
def dmp_zz_wang_test_points(f, T, ct, A, u, K):
"""Wang/EEZ: Test evaluation points for suitability. """
if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K):
raise EvaluationFailed('no luck')
g = dmp_eval_tail(f, A, u, K)
if not dup_sqf_p(g, K):
raise EvaluationFailed('no luck')
c, h = dup_primitive(g, K)
if K.is_negative(dup_LC(h, K)):
c, h = -c, dup_neg(h, K)
v = u - 1
E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ]
D = dmp_zz_wang_non_divisors(E, c, ct, K)
if D is not None:
return c, h, E
else:
raise EvaluationFailed('no luck')
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K):
"""Wang/EEZ: Compute correct leading coefficients. """
C, J, v = [], [0]*len(E), u - 1
for h in H:
c = dmp_one(v, K)
d = dup_LC(h, K)*cs
for i in reversed(range(len(E))):
k, e, (t, _) = 0, E[i], T[i]
while not (d % e):
d, k = d//e, k + 1
if k != 0:
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1
C.append(c)
if not all(J):
raise ExtraneousFactors # pragma: no cover
CC, HH = [], []
for c, h in zip(C, H):
d = dmp_eval_tail(c, A, v, K)
lc = dup_LC(h, K)
if K.is_one(cs):
cc = lc//d
else:
g = K.gcd(lc, d)
d, cc = d//g, lc//g
h, cs = dup_mul_ground(h, d, K), cs//d
c = dmp_mul_ground(c, cc, v, K)
CC.append(c)
HH.append(h)
if K.is_one(cs):
return f, HH, CC
CCC, HHH = [], []
for c, h in zip(CC, HH):
CCC.append(dmp_mul_ground(c, cs, v, K))
HHH.append(dmp_mul_ground(h, cs, 0, K))
f = dmp_mul_ground(f, cs**(len(H) - 1), u, K)
return f, HHH, CCC
def dup_zz_diophantine(F, m, p, K):
"""Wang/EEZ: Solve univariate Diophantine equations. """
if len(F) == 2:
a, b = F
f = gf_from_int_poly(a, p)
g = gf_from_int_poly(b, p)
s, t, G = gf_gcdex(g, f, p, K)
s = gf_lshift(s, m, K)
t = gf_lshift(t, m, K)
q, s = gf_div(s, f, p, K)
t = gf_add_mul(t, q, g, p, K)
s = gf_to_int_poly(s, p)
t = gf_to_int_poly(t, p)
result = [s, t]
else:
G = [F[-1]]
for f in reversed(F[1:-1]):
G.insert(0, dup_mul(f, G[0], K))
S, T = [], [[1]]
for f, g in zip(F, G):
t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K)
T.append(t)
S.append(s)
result, S = [], S + [T[-1]]
for s, f in zip(S, F):
s = gf_from_int_poly(s, p)
f = gf_from_int_poly(f, p)
r = gf_rem(gf_lshift(s, m, K), f, p, K)
s = gf_to_int_poly(r, p)
result.append(s)
return result
def dmp_zz_diophantine(F, c, A, d, p, u, K):
"""Wang/EEZ: Solve multivariate Diophantine equations. """
if not A:
S = [ [] for _ in F ]
n = dup_degree(c)
for i, coeff in enumerate(c):
if not coeff:
continue
T = dup_zz_diophantine(F, n - i, p, K)
for j, (s, t) in enumerate(zip(S, T)):
t = dup_mul_ground(t, coeff, K)
S[j] = dup_trunc(dup_add(s, t, K), p, K)
else:
n = len(A)
e = dmp_expand(F, u, K)
a, A = A[-1], A[:-1]
B, G = [], []
for f in F:
B.append(dmp_quo(e, f, u, K))
G.append(dmp_eval_in(f, a, n, u, K))
C = dmp_eval_in(c, a, n, u, K)
v = u - 1
S = dmp_zz_diophantine(G, C, A, d, p, v, K)
S = [ dmp_raise(s, 1, v, K) for s in S ]
for s, b in zip(S, B):
c = dmp_sub_mul(c, s, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
m = dmp_nest([K.one, -a], n, K)
M = dmp_one(n, K)
for k in K.map(range(0, d)):
if dmp_zero_p(c, u):
break
M = dmp_mul(M, m, u, K)
C = dmp_diff_eval_in(c, k + 1, a, n, u, K)
if not dmp_zero_p(C, v):
C = dmp_quo_ground(C, K.factorial(k + 1), v, K)
T = dmp_zz_diophantine(G, C, A, d, p, v, K)
for i, t in enumerate(T):
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K)
for i, (s, t) in enumerate(zip(S, T)):
S[i] = dmp_add(s, t, u, K)
for t, b in zip(T, B):
c = dmp_sub_mul(c, t, b, u, K)
c = dmp_ground_trunc(c, p, u, K)
S = [ dmp_ground_trunc(s, p, u, K) for s in S ]
return S
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K):
"""Wang/EEZ: Parallel Hensel lifting algorithm. """
S, n, v = [f], len(A), u - 1
H = list(H)
for i, a in enumerate(reversed(A[1:])):
s = dmp_eval_in(S[0], a, n - i, u - i, K)
S.insert(0, dmp_ground_trunc(s, p, v - i, K))
d = max(dmp_degree_list(f, u)[1:])
for j, s, a in zip(range(2, n + 2), S, A):
G, w = list(H), j - 1
I, J = A[:j - 2], A[j - 1:]
for i, (h, lc) in enumerate(zip(H, LC)):
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K)
H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K)
m = dmp_nest([K.one, -a], w, K)
M = dmp_one(w, K)
c = dmp_sub(s, dmp_expand(H, w, K), w, K)
dj = dmp_degree_in(s, w, w)
for k in K.map(range(0, dj)):
if dmp_zero_p(c, w):
break
M = dmp_mul(M, m, w, K)
C = dmp_diff_eval_in(c, k + 1, a, w, w, K)
if not dmp_zero_p(C, w - 1):
C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K)
T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K)
for i, (h, t) in enumerate(zip(H, T)):
h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K)
H[i] = dmp_ground_trunc(h, p, w, K)
h = dmp_sub(s, dmp_expand(H, w, K), w, K)
c = dmp_ground_trunc(h, p, w, K)
if dmp_expand(H, u, K) != f:
raise ExtraneousFactors # pragma: no cover
else:
return H
def dmp_zz_wang(f, u, K, mod=None, seed=None):
r"""
Factor primitive square-free polynomials in `Z[X]`.
Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is
primitive and square-free in `x_1`, computes factorization of `f` into
irreducibles over integers.
The procedure is based on Wang's Enhanced Extended Zassenhaus
algorithm. The algorithm works by viewing `f` as a univariate polynomial
in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed::
x_2 -> a_2, ..., x_n -> a_n
where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers. The
mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`,
which can be factored efficiently using Zassenhaus algorithm. The last
step is to lift univariate factors to obtain true multivariate
factors. For this purpose a parallel Hensel lifting procedure is used.
The parameter ``seed`` is passed to _randint and can be used to seed randint
(when an integer) or (for testing purposes) can be a sequence of numbers.
References
==========
.. [1] [Wang78]_
.. [2] [Geddes92]_
"""
from sympy.ntheory import nextprime
randint = _randint(seed)
ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K)
b = dmp_zz_mignotte_bound(f, u, K)
p = K(nextprime(b))
if mod is None:
if u == 1:
mod = 2
else:
mod = 1
history, configs, A, r = set(), [], [K.zero]*u, None
try:
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
_, H = dup_zz_factor_sqf(s, K)
r = len(H)
if r == 1:
return [f]
configs = [(s, cs, E, H, A)]
except EvaluationFailed:
pass
eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS')
eez_num_tries = query('EEZ_NUMBER_OF_TRIES')
eez_mod_step = query('EEZ_MODULUS_STEP')
while len(configs) < eez_num_configs:
for _ in range(eez_num_tries):
A = [ K(randint(-mod, mod)) for _ in range(u) ]
if tuple(A) not in history:
history.add(tuple(A))
else:
continue
try:
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K)
except EvaluationFailed:
continue
_, H = dup_zz_factor_sqf(s, K)
rr = len(H)
if r is not None:
if rr != r: # pragma: no cover
if rr < r:
configs, r = [], rr
else:
continue
else:
r = rr
if r == 1:
return [f]
configs.append((s, cs, E, H, A))
if len(configs) == eez_num_configs:
break
else:
mod += eez_mod_step
s_norm, s_arg, i = None, 0, 0
for s, _, _, _, _ in configs:
_s_norm = dup_max_norm(s, K)
if s_norm is not None:
if _s_norm < s_norm:
s_norm = _s_norm
s_arg = i
else:
s_norm = _s_norm
i += 1
_, cs, E, H, A = configs[s_arg]
orig_f = f
try:
f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K)
factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K)
except ExtraneousFactors: # pragma: no cover
if query('EEZ_RESTART_IF_NEEDED'):
return dmp_zz_wang(orig_f, u, K, mod + 1)
else:
raise ExtraneousFactors(
"we need to restart algorithm with better parameters")
result = []
for f in factors:
_, f = dmp_ground_primitive(f, u, K)
if K.is_negative(dmp_ground_LC(f, u, K)):
f = dmp_neg(f, u, K)
result.append(f)
return result
def dmp_zz_factor(f, u, K):
r"""
Factor (non square-free) polynomials in `Z[X]`.
Given a multivariate polynomial `f` in `Z[x]` computes its complete
factorization `f_1, \dots, f_n` into irreducibles over integers::
f = content(f) f_1**k_1 ... f_n**k_n
The factorization is computed by reducing the input polynomial
into a primitive square-free polynomial and factoring it using
Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division
is used to recover the multiplicities of factors.
The result is returned as a tuple consisting of::
(content(f), [(f_1, k_1), ..., (f_n, k_n))
Consider polynomial `f = 2*(x**2 - y**2)`::
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> R.dmp_zz_factor(2*x**2 - 2*y**2)
(2, [(x - y, 1), (x + y, 1)])
In result we got the following factorization::
f = 2 (x - y) (x + y)
References
==========
.. [1] [Gathen99]_
"""
if not u:
return dup_zz_factor(f, K)
if dmp_zero_p(f, u):
return K.zero, []
cont, g = dmp_ground_primitive(f, u, K)
if dmp_ground_LC(g, u, K) < 0:
cont, g = -cont, dmp_neg(g, u, K)
if all(d <= 0 for d in dmp_degree_list(g, u)):
return cont, []
G, g = dmp_primitive(g, u, K)
factors = []
if dmp_degree(g, u) > 0:
g = dmp_sqf_part(g, u, K)
H = dmp_zz_wang(g, u, K)
factors = dmp_trial_division(f, H, u, K)
for g, k in dmp_zz_factor(G, u - 1, K)[1]:
factors.insert(0, ([g], k))
return cont, _sort_factors(factors)
def dup_qq_i_factor(f, K0):
"""Factor univariate polynomials into irreducibles in `QQ_I[x]`. """
# Factor in QQ<I>
K1 = K0.as_AlgebraicField()
f = dup_convert(f, K0, K1)
coeff, factors = dup_factor_list(f, K1)
factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors]
coeff = K0.convert(coeff, K1)
return coeff, factors
def dup_zz_i_factor(f, K0):
"""Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """
# First factor in QQ_I
K1 = K0.get_field()
f = dup_convert(f, K0, K1)
coeff, factors = dup_qq_i_factor(f, K1)
new_factors = []
for fac, i in factors:
# Extract content
fac_denom, fac_num = dup_clear_denoms(fac, K1)
fac_num_ZZ_I = dup_convert(fac_num, K1, K0)
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K1)
coeff = (coeff * content ** i) // fac_denom ** i
new_factors.append((fac_prim, i))
factors = new_factors
coeff = K0.convert(coeff, K1)
return coeff, factors
def dmp_qq_i_factor(f, u, K0):
"""Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """
# Factor in QQ<I>
K1 = K0.as_AlgebraicField()
f = dmp_convert(f, u, K0, K1)
coeff, factors = dmp_factor_list(f, u, K1)
factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors]
coeff = K0.convert(coeff, K1)
return coeff, factors
def dmp_zz_i_factor(f, u, K0):
"""Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """
# First factor in QQ_I
K1 = K0.get_field()
f = dmp_convert(f, u, K0, K1)
coeff, factors = dmp_qq_i_factor(f, u, K1)
new_factors = []
for fac, i in factors:
# Extract content
fac_denom, fac_num = dmp_clear_denoms(fac, u, K1)
fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0)
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K1)
coeff = (coeff * content ** i) // fac_denom ** i
new_factors.append((fac_prim, i))
factors = new_factors
coeff = K0.convert(coeff, K1)
return coeff, factors
def dup_ext_factor(f, K):
"""Factor univariate polynomials over algebraic number fields. """
n, lc = dup_degree(f), dup_LC(f, K)
f = dup_monic(f, K)
if n <= 0:
return lc, []
if n == 1:
return lc, [(f, 1)]
f, F = dup_sqf_part(f, K), f
s, g, r = dup_sqf_norm(f, K)
factors = dup_factor_list_include(r, K.dom)
if len(factors) == 1:
return lc, [(f, n//dup_degree(f))]
H = s*K.unit
for i, (factor, _) in enumerate(factors):
h = dup_convert(factor, K.dom, K)
h, _, g = dup_inner_gcd(h, g, K)
h = dup_shift(h, H, K)
factors[i] = h
factors = dup_trial_division(F, factors, K)
return lc, factors
def dmp_ext_factor(f, u, K):
"""Factor multivariate polynomials over algebraic number fields. """
if not u:
return dup_ext_factor(f, K)
lc = dmp_ground_LC(f, u, K)
f = dmp_ground_monic(f, u, K)
if all(d <= 0 for d in dmp_degree_list(f, u)):
return lc, []
f, F = dmp_sqf_part(f, u, K), f
s, g, r = dmp_sqf_norm(f, u, K)
factors = dmp_factor_list_include(r, u, K.dom)
if len(factors) == 1:
factors = [f]
else:
H = dmp_raise([K.one, s*K.unit], u, 0, K)
for i, (factor, _) in enumerate(factors):
h = dmp_convert(factor, u, K.dom, K)
h, _, g = dmp_inner_gcd(h, g, u, K)
h = dmp_compose(h, H, u, K)
factors[i] = h
return lc, dmp_trial_division(F, factors, u, K)
def dup_gf_factor(f, K):
"""Factor univariate polynomials over finite fields. """
f = dup_convert(f, K, K.dom)
coeff, factors = gf_factor(f, K.mod, K.dom)
for i, (f, k) in enumerate(factors):
factors[i] = (dup_convert(f, K.dom, K), k)
return K.convert(coeff, K.dom), factors
def dmp_gf_factor(f, u, K):
"""Factor multivariate polynomials over finite fields. """
raise NotImplementedError('multivariate polynomials over finite fields')
def dup_factor_list(f, K0):
"""Factor univariate polynomials into irreducibles in `K[x]`. """
j, f = dup_terms_gcd(f, K0)
cont, f = dup_primitive(f, K0)
if K0.is_FiniteField:
coeff, factors = dup_gf_factor(f, K0)
elif K0.is_Algebraic:
coeff, factors = dup_ext_factor(f, K0)
elif K0.is_GaussianRing:
coeff, factors = dup_zz_i_factor(f, K0)
elif K0.is_GaussianField:
coeff, factors = dup_qq_i_factor(f, K0)
else:
if not K0.is_Exact:
K0_inexact, K0 = K0, K0.get_exact()
f = dup_convert(f, K0_inexact, K0)
else:
K0_inexact = None
if K0.is_Field:
K = K0.get_ring()
denom, f = dup_clear_denoms(f, K0, K)
f = dup_convert(f, K0, K)
else:
K = K0
if K.is_ZZ:
coeff, factors = dup_zz_factor(f, K)
elif K.is_Poly:
f, u = dmp_inject(f, 0, K)
coeff, factors = dmp_factor_list(f, u, K.dom)
for i, (f, k) in enumerate(factors):
factors[i] = (dmp_eject(f, u, K), k)
coeff = K.convert(coeff, K.dom)
else: # pragma: no cover
raise DomainError('factorization not supported over %s' % K0)
if K0.is_Field:
for i, (f, k) in enumerate(factors):
factors[i] = (dup_convert(f, K, K0), k)
coeff = K0.convert(coeff, K)
coeff = K0.quo(coeff, denom)
if K0_inexact:
for i, (f, k) in enumerate(factors):
max_norm = dup_max_norm(f, K0)
f = dup_quo_ground(f, max_norm, K0)
f = dup_convert(f, K0, K0_inexact)
factors[i] = (f, k)
coeff = K0.mul(coeff, K0.pow(max_norm, k))
coeff = K0_inexact.convert(coeff, K0)
K0 = K0_inexact
if j:
factors.insert(0, ([K0.one, K0.zero], j))
return coeff*cont, _sort_factors(factors)
def dup_factor_list_include(f, K):
"""Factor univariate polynomials into irreducibles in `K[x]`. """
coeff, factors = dup_factor_list(f, K)
if not factors:
return [(dup_strip([coeff]), 1)]
else:
g = dup_mul_ground(factors[0][0], coeff, K)
return [(g, factors[0][1])] + factors[1:]
def dmp_factor_list(f, u, K0):
"""Factor multivariate polynomials into irreducibles in `K[X]`. """
if not u:
return dup_factor_list(f, K0)
J, f = dmp_terms_gcd(f, u, K0)
cont, f = dmp_ground_primitive(f, u, K0)
if K0.is_FiniteField: # pragma: no cover
coeff, factors = dmp_gf_factor(f, u, K0)
elif K0.is_Algebraic:
coeff, factors = dmp_ext_factor(f, u, K0)
elif K0.is_GaussianRing:
coeff, factors = dmp_zz_i_factor(f, u, K0)
elif K0.is_GaussianField:
coeff, factors = dmp_qq_i_factor(f, u, K0)
else:
if not K0.is_Exact:
K0_inexact, K0 = K0, K0.get_exact()
f = dmp_convert(f, u, K0_inexact, K0)
else:
K0_inexact = None
if K0.is_Field:
K = K0.get_ring()
denom, f = dmp_clear_denoms(f, u, K0, K)
f = dmp_convert(f, u, K0, K)
else:
K = K0
if K.is_ZZ:
levels, f, v = dmp_exclude(f, u, K)
coeff, factors = dmp_zz_factor(f, v, K)
for i, (f, k) in enumerate(factors):
factors[i] = (dmp_include(f, levels, v, K), k)
elif K.is_Poly:
f, v = dmp_inject(f, u, K)
coeff, factors = dmp_factor_list(f, v, K.dom)
for i, (f, k) in enumerate(factors):
factors[i] = (dmp_eject(f, v, K), k)
coeff = K.convert(coeff, K.dom)
else: # pragma: no cover
raise DomainError('factorization not supported over %s' % K0)
if K0.is_Field:
for i, (f, k) in enumerate(factors):
factors[i] = (dmp_convert(f, u, K, K0), k)
coeff = K0.convert(coeff, K)
coeff = K0.quo(coeff, denom)
if K0_inexact:
for i, (f, k) in enumerate(factors):
max_norm = dmp_max_norm(f, u, K0)
f = dmp_quo_ground(f, max_norm, u, K0)
f = dmp_convert(f, u, K0, K0_inexact)
factors[i] = (f, k)
coeff = K0.mul(coeff, K0.pow(max_norm, k))
coeff = K0_inexact.convert(coeff, K0)
K0 = K0_inexact
for i, j in enumerate(reversed(J)):
if not j:
continue
term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one}
factors.insert(0, (dmp_from_dict(term, u, K0), j))
return coeff*cont, _sort_factors(factors)
def dmp_factor_list_include(f, u, K):
"""Factor multivariate polynomials into irreducibles in `K[X]`. """
if not u:
return dup_factor_list_include(f, K)
coeff, factors = dmp_factor_list(f, u, K)
if not factors:
return [(dmp_ground(coeff, u), 1)]
else:
g = dmp_mul_ground(factors[0][0], coeff, u, K)
return [(g, factors[0][1])] + factors[1:]
def dup_irreducible_p(f, K):
"""
Returns ``True`` if a univariate polynomial ``f`` has no factors
over its domain.
"""
return dmp_irreducible_p(f, 0, K)
def dmp_irreducible_p(f, u, K):
"""
Returns ``True`` if a multivariate polynomial ``f`` has no factors
over its domain.
"""
_, factors = dmp_factor_list(f, u, K)
if not factors:
return True
elif len(factors) > 1:
return False
else:
_, k = factors[0]
return k == 1