2940 lines
103 KiB
Python
2940 lines
103 KiB
Python
import itertools
|
|
|
|
from sympy.core import S
|
|
from sympy.core.add import Add
|
|
from sympy.core.containers import Tuple
|
|
from sympy.core.function import Function
|
|
from sympy.core.mul import Mul
|
|
from sympy.core.numbers import Number, Rational
|
|
from sympy.core.power import Pow
|
|
from sympy.core.sorting import default_sort_key
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.core.sympify import SympifyError
|
|
from sympy.printing.conventions import requires_partial
|
|
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
|
|
from sympy.printing.printer import Printer, print_function
|
|
from sympy.printing.str import sstr
|
|
from sympy.utilities.iterables import has_variety
|
|
from sympy.utilities.exceptions import sympy_deprecation_warning
|
|
|
|
from sympy.printing.pretty.stringpict import prettyForm, stringPict
|
|
from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \
|
|
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
|
|
pretty_try_use_unicode, annotated
|
|
|
|
# rename for usage from outside
|
|
pprint_use_unicode = pretty_use_unicode
|
|
pprint_try_use_unicode = pretty_try_use_unicode
|
|
|
|
|
|
class PrettyPrinter(Printer):
|
|
"""Printer, which converts an expression into 2D ASCII-art figure."""
|
|
printmethod = "_pretty"
|
|
|
|
_default_settings = {
|
|
"order": None,
|
|
"full_prec": "auto",
|
|
"use_unicode": None,
|
|
"wrap_line": True,
|
|
"num_columns": None,
|
|
"use_unicode_sqrt_char": True,
|
|
"root_notation": True,
|
|
"mat_symbol_style": "plain",
|
|
"imaginary_unit": "i",
|
|
"perm_cyclic": True
|
|
}
|
|
|
|
def __init__(self, settings=None):
|
|
Printer.__init__(self, settings)
|
|
|
|
if not isinstance(self._settings['imaginary_unit'], str):
|
|
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
|
|
elif self._settings['imaginary_unit'] not in ("i", "j"):
|
|
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
|
|
|
|
def emptyPrinter(self, expr):
|
|
return prettyForm(str(expr))
|
|
|
|
@property
|
|
def _use_unicode(self):
|
|
if self._settings['use_unicode']:
|
|
return True
|
|
else:
|
|
return pretty_use_unicode()
|
|
|
|
def doprint(self, expr):
|
|
return self._print(expr).render(**self._settings)
|
|
|
|
# empty op so _print(stringPict) returns the same
|
|
def _print_stringPict(self, e):
|
|
return e
|
|
|
|
def _print_basestring(self, e):
|
|
return prettyForm(e)
|
|
|
|
def _print_atan2(self, e):
|
|
pform = prettyForm(*self._print_seq(e.args).parens())
|
|
pform = prettyForm(*pform.left('atan2'))
|
|
return pform
|
|
|
|
def _print_Symbol(self, e, bold_name=False):
|
|
symb = pretty_symbol(e.name, bold_name)
|
|
return prettyForm(symb)
|
|
_print_RandomSymbol = _print_Symbol
|
|
def _print_MatrixSymbol(self, e):
|
|
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
|
|
|
|
def _print_Float(self, e):
|
|
# we will use StrPrinter's Float printer, but we need to handle the
|
|
# full_prec ourselves, according to the self._print_level
|
|
full_prec = self._settings["full_prec"]
|
|
if full_prec == "auto":
|
|
full_prec = self._print_level == 1
|
|
return prettyForm(sstr(e, full_prec=full_prec))
|
|
|
|
def _print_Cross(self, e):
|
|
vec1 = e._expr1
|
|
vec2 = e._expr2
|
|
pform = self._print(vec2)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
|
|
pform = prettyForm(*pform.left(')'))
|
|
pform = prettyForm(*pform.left(self._print(vec1)))
|
|
pform = prettyForm(*pform.left('('))
|
|
return pform
|
|
|
|
def _print_Curl(self, e):
|
|
vec = e._expr
|
|
pform = self._print(vec)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
|
|
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
|
|
return pform
|
|
|
|
def _print_Divergence(self, e):
|
|
vec = e._expr
|
|
pform = self._print(vec)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
|
|
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
|
|
return pform
|
|
|
|
def _print_Dot(self, e):
|
|
vec1 = e._expr1
|
|
vec2 = e._expr2
|
|
pform = self._print(vec2)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
|
|
pform = prettyForm(*pform.left(')'))
|
|
pform = prettyForm(*pform.left(self._print(vec1)))
|
|
pform = prettyForm(*pform.left('('))
|
|
return pform
|
|
|
|
def _print_Gradient(self, e):
|
|
func = e._expr
|
|
pform = self._print(func)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
|
|
return pform
|
|
|
|
def _print_Laplacian(self, e):
|
|
func = e._expr
|
|
pform = self._print(func)
|
|
pform = prettyForm(*pform.left('('))
|
|
pform = prettyForm(*pform.right(')'))
|
|
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
|
|
return pform
|
|
|
|
def _print_Atom(self, e):
|
|
try:
|
|
# print atoms like Exp1 or Pi
|
|
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
|
|
except KeyError:
|
|
return self.emptyPrinter(e)
|
|
|
|
# Infinity inherits from Number, so we have to override _print_XXX order
|
|
_print_Infinity = _print_Atom
|
|
_print_NegativeInfinity = _print_Atom
|
|
_print_EmptySet = _print_Atom
|
|
_print_Naturals = _print_Atom
|
|
_print_Naturals0 = _print_Atom
|
|
_print_Integers = _print_Atom
|
|
_print_Rationals = _print_Atom
|
|
_print_Complexes = _print_Atom
|
|
|
|
_print_EmptySequence = _print_Atom
|
|
|
|
def _print_Reals(self, e):
|
|
if self._use_unicode:
|
|
return self._print_Atom(e)
|
|
else:
|
|
inf_list = ['-oo', 'oo']
|
|
return self._print_seq(inf_list, '(', ')')
|
|
|
|
def _print_subfactorial(self, e):
|
|
x = e.args[0]
|
|
pform = self._print(x)
|
|
# Add parentheses if needed
|
|
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left('!'))
|
|
return pform
|
|
|
|
def _print_factorial(self, e):
|
|
x = e.args[0]
|
|
pform = self._print(x)
|
|
# Add parentheses if needed
|
|
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.right('!'))
|
|
return pform
|
|
|
|
def _print_factorial2(self, e):
|
|
x = e.args[0]
|
|
pform = self._print(x)
|
|
# Add parentheses if needed
|
|
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.right('!!'))
|
|
return pform
|
|
|
|
def _print_binomial(self, e):
|
|
n, k = e.args
|
|
|
|
n_pform = self._print(n)
|
|
k_pform = self._print(k)
|
|
|
|
bar = ' '*max(n_pform.width(), k_pform.width())
|
|
|
|
pform = prettyForm(*k_pform.above(bar))
|
|
pform = prettyForm(*pform.above(n_pform))
|
|
pform = prettyForm(*pform.parens('(', ')'))
|
|
|
|
pform.baseline = (pform.baseline + 1)//2
|
|
|
|
return pform
|
|
|
|
def _print_Relational(self, e):
|
|
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
|
|
|
|
l = self._print(e.lhs)
|
|
r = self._print(e.rhs)
|
|
pform = prettyForm(*stringPict.next(l, op, r), binding=prettyForm.OPEN)
|
|
return pform
|
|
|
|
def _print_Not(self, e):
|
|
from sympy.logic.boolalg import (Equivalent, Implies)
|
|
if self._use_unicode:
|
|
arg = e.args[0]
|
|
pform = self._print(arg)
|
|
if isinstance(arg, Equivalent):
|
|
return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
|
|
if isinstance(arg, Implies):
|
|
return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}")
|
|
|
|
if arg.is_Boolean and not arg.is_Not:
|
|
pform = prettyForm(*pform.parens())
|
|
|
|
return prettyForm(*pform.left("\N{NOT SIGN}"))
|
|
else:
|
|
return self._print_Function(e)
|
|
|
|
def __print_Boolean(self, e, char, sort=True):
|
|
args = e.args
|
|
if sort:
|
|
args = sorted(e.args, key=default_sort_key)
|
|
arg = args[0]
|
|
pform = self._print(arg)
|
|
|
|
if arg.is_Boolean and not arg.is_Not:
|
|
pform = prettyForm(*pform.parens())
|
|
|
|
for arg in args[1:]:
|
|
pform_arg = self._print(arg)
|
|
|
|
if arg.is_Boolean and not arg.is_Not:
|
|
pform_arg = prettyForm(*pform_arg.parens())
|
|
|
|
pform = prettyForm(*pform.right(' %s ' % char))
|
|
pform = prettyForm(*pform.right(pform_arg))
|
|
|
|
return pform
|
|
|
|
def _print_And(self, e):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, "\N{LOGICAL AND}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_Or(self, e):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, "\N{LOGICAL OR}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_Xor(self, e):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, "\N{XOR}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_Nand(self, e):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, "\N{NAND}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_Nor(self, e):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, "\N{NOR}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_Implies(self, e, altchar=None):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False)
|
|
else:
|
|
return self._print_Function(e)
|
|
|
|
def _print_Equivalent(self, e, altchar=None):
|
|
if self._use_unicode:
|
|
return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}")
|
|
else:
|
|
return self._print_Function(e, sort=True)
|
|
|
|
def _print_conjugate(self, e):
|
|
pform = self._print(e.args[0])
|
|
return prettyForm( *pform.above( hobj('_', pform.width())) )
|
|
|
|
def _print_Abs(self, e):
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens('|', '|'))
|
|
return pform
|
|
|
|
def _print_floor(self, e):
|
|
if self._use_unicode:
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
|
|
return pform
|
|
else:
|
|
return self._print_Function(e)
|
|
|
|
def _print_ceiling(self, e):
|
|
if self._use_unicode:
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens('lceil', 'rceil'))
|
|
return pform
|
|
else:
|
|
return self._print_Function(e)
|
|
|
|
def _print_Derivative(self, deriv):
|
|
if requires_partial(deriv.expr) and self._use_unicode:
|
|
deriv_symbol = U('PARTIAL DIFFERENTIAL')
|
|
else:
|
|
deriv_symbol = r'd'
|
|
x = None
|
|
count_total_deriv = 0
|
|
|
|
for sym, num in reversed(deriv.variable_count):
|
|
s = self._print(sym)
|
|
ds = prettyForm(*s.left(deriv_symbol))
|
|
count_total_deriv += num
|
|
|
|
if (not num.is_Integer) or (num > 1):
|
|
ds = ds**prettyForm(str(num))
|
|
|
|
if x is None:
|
|
x = ds
|
|
else:
|
|
x = prettyForm(*x.right(' '))
|
|
x = prettyForm(*x.right(ds))
|
|
|
|
f = prettyForm(
|
|
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
|
|
|
|
pform = prettyForm(deriv_symbol)
|
|
|
|
if (count_total_deriv > 1) != False:
|
|
pform = pform**prettyForm(str(count_total_deriv))
|
|
|
|
pform = prettyForm(*pform.below(stringPict.LINE, x))
|
|
pform.baseline = pform.baseline + 1
|
|
pform = prettyForm(*stringPict.next(pform, f))
|
|
pform.binding = prettyForm.MUL
|
|
|
|
return pform
|
|
|
|
def _print_Cycle(self, dc):
|
|
from sympy.combinatorics.permutations import Permutation, Cycle
|
|
# for Empty Cycle
|
|
if dc == Cycle():
|
|
cyc = stringPict('')
|
|
return prettyForm(*cyc.parens())
|
|
|
|
dc_list = Permutation(dc.list()).cyclic_form
|
|
# for Identity Cycle
|
|
if dc_list == []:
|
|
cyc = self._print(dc.size - 1)
|
|
return prettyForm(*cyc.parens())
|
|
|
|
cyc = stringPict('')
|
|
for i in dc_list:
|
|
l = self._print(str(tuple(i)).replace(',', ''))
|
|
cyc = prettyForm(*cyc.right(l))
|
|
return cyc
|
|
|
|
def _print_Permutation(self, expr):
|
|
from sympy.combinatorics.permutations import Permutation, Cycle
|
|
|
|
perm_cyclic = Permutation.print_cyclic
|
|
if perm_cyclic is not None:
|
|
sympy_deprecation_warning(
|
|
f"""
|
|
Setting Permutation.print_cyclic is deprecated. Instead use
|
|
init_printing(perm_cyclic={perm_cyclic}).
|
|
""",
|
|
deprecated_since_version="1.6",
|
|
active_deprecations_target="deprecated-permutation-print_cyclic",
|
|
stacklevel=7,
|
|
)
|
|
else:
|
|
perm_cyclic = self._settings.get("perm_cyclic", True)
|
|
|
|
if perm_cyclic:
|
|
return self._print_Cycle(Cycle(expr))
|
|
|
|
lower = expr.array_form
|
|
upper = list(range(len(lower)))
|
|
|
|
result = stringPict('')
|
|
first = True
|
|
for u, l in zip(upper, lower):
|
|
s1 = self._print(u)
|
|
s2 = self._print(l)
|
|
col = prettyForm(*s1.below(s2))
|
|
if first:
|
|
first = False
|
|
else:
|
|
col = prettyForm(*col.left(" "))
|
|
result = prettyForm(*result.right(col))
|
|
return prettyForm(*result.parens())
|
|
|
|
|
|
def _print_Integral(self, integral):
|
|
f = integral.function
|
|
|
|
# Add parentheses if arg involves addition of terms and
|
|
# create a pretty form for the argument
|
|
prettyF = self._print(f)
|
|
# XXX generalize parens
|
|
if f.is_Add:
|
|
prettyF = prettyForm(*prettyF.parens())
|
|
|
|
# dx dy dz ...
|
|
arg = prettyF
|
|
for x in integral.limits:
|
|
prettyArg = self._print(x[0])
|
|
# XXX qparens (parens if needs-parens)
|
|
if prettyArg.width() > 1:
|
|
prettyArg = prettyForm(*prettyArg.parens())
|
|
|
|
arg = prettyForm(*arg.right(' d', prettyArg))
|
|
|
|
# \int \int \int ...
|
|
firstterm = True
|
|
s = None
|
|
for lim in integral.limits:
|
|
# Create bar based on the height of the argument
|
|
h = arg.height()
|
|
H = h + 2
|
|
|
|
# XXX hack!
|
|
ascii_mode = not self._use_unicode
|
|
if ascii_mode:
|
|
H += 2
|
|
|
|
vint = vobj('int', H)
|
|
|
|
# Construct the pretty form with the integral sign and the argument
|
|
pform = prettyForm(vint)
|
|
pform.baseline = arg.baseline + (
|
|
H - h)//2 # covering the whole argument
|
|
|
|
if len(lim) > 1:
|
|
# Create pretty forms for endpoints, if definite integral.
|
|
# Do not print empty endpoints.
|
|
if len(lim) == 2:
|
|
prettyA = prettyForm("")
|
|
prettyB = self._print(lim[1])
|
|
if len(lim) == 3:
|
|
prettyA = self._print(lim[1])
|
|
prettyB = self._print(lim[2])
|
|
|
|
if ascii_mode: # XXX hack
|
|
# Add spacing so that endpoint can more easily be
|
|
# identified with the correct integral sign
|
|
spc = max(1, 3 - prettyB.width())
|
|
prettyB = prettyForm(*prettyB.left(' ' * spc))
|
|
|
|
spc = max(1, 4 - prettyA.width())
|
|
prettyA = prettyForm(*prettyA.right(' ' * spc))
|
|
|
|
pform = prettyForm(*pform.above(prettyB))
|
|
pform = prettyForm(*pform.below(prettyA))
|
|
|
|
if not ascii_mode: # XXX hack
|
|
pform = prettyForm(*pform.right(' '))
|
|
|
|
if firstterm:
|
|
s = pform # first term
|
|
firstterm = False
|
|
else:
|
|
s = prettyForm(*s.left(pform))
|
|
|
|
pform = prettyForm(*arg.left(s))
|
|
pform.binding = prettyForm.MUL
|
|
return pform
|
|
|
|
def _print_Product(self, expr):
|
|
func = expr.term
|
|
pretty_func = self._print(func)
|
|
|
|
horizontal_chr = xobj('_', 1)
|
|
corner_chr = xobj('_', 1)
|
|
vertical_chr = xobj('|', 1)
|
|
|
|
if self._use_unicode:
|
|
# use unicode corners
|
|
horizontal_chr = xobj('-', 1)
|
|
corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
|
|
|
|
func_height = pretty_func.height()
|
|
|
|
first = True
|
|
max_upper = 0
|
|
sign_height = 0
|
|
|
|
for lim in expr.limits:
|
|
pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
|
|
|
|
width = (func_height + 2) * 5 // 3 - 2
|
|
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
|
|
for _ in range(func_height + 1):
|
|
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
|
|
|
|
pretty_sign = stringPict('')
|
|
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
|
|
|
|
|
|
max_upper = max(max_upper, pretty_upper.height())
|
|
|
|
if first:
|
|
sign_height = pretty_sign.height()
|
|
|
|
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
|
|
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
|
|
|
|
if first:
|
|
pretty_func.baseline = 0
|
|
first = False
|
|
|
|
height = pretty_sign.height()
|
|
padding = stringPict('')
|
|
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
|
|
pretty_sign = prettyForm(*pretty_sign.right(padding))
|
|
|
|
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
|
|
|
|
pretty_func.baseline = max_upper + sign_height//2
|
|
pretty_func.binding = prettyForm.MUL
|
|
return pretty_func
|
|
|
|
def __print_SumProduct_Limits(self, lim):
|
|
def print_start(lhs, rhs):
|
|
op = prettyForm(' ' + xsym("==") + ' ')
|
|
l = self._print(lhs)
|
|
r = self._print(rhs)
|
|
pform = prettyForm(*stringPict.next(l, op, r))
|
|
return pform
|
|
|
|
prettyUpper = self._print(lim[2])
|
|
prettyLower = print_start(lim[0], lim[1])
|
|
return prettyLower, prettyUpper
|
|
|
|
def _print_Sum(self, expr):
|
|
ascii_mode = not self._use_unicode
|
|
|
|
def asum(hrequired, lower, upper, use_ascii):
|
|
def adjust(s, wid=None, how='<^>'):
|
|
if not wid or len(s) > wid:
|
|
return s
|
|
need = wid - len(s)
|
|
if how in ('<^>', "<") or how not in list('<^>'):
|
|
return s + ' '*need
|
|
half = need//2
|
|
lead = ' '*half
|
|
if how == ">":
|
|
return " "*need + s
|
|
return lead + s + ' '*(need - len(lead))
|
|
|
|
h = max(hrequired, 2)
|
|
d = h//2
|
|
w = d + 1
|
|
more = hrequired % 2
|
|
|
|
lines = []
|
|
if use_ascii:
|
|
lines.append("_"*(w) + ' ')
|
|
lines.append(r"\%s`" % (' '*(w - 1)))
|
|
for i in range(1, d):
|
|
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
|
|
if more:
|
|
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
|
|
for i in reversed(range(1, d)):
|
|
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
|
|
lines.append("/" + "_"*(w - 1) + ',')
|
|
return d, h + more, lines, more
|
|
else:
|
|
w = w + more
|
|
d = d + more
|
|
vsum = vobj('sum', 4)
|
|
lines.append("_"*(w))
|
|
for i in range(0, d):
|
|
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
|
|
for i in reversed(range(0, d)):
|
|
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
|
|
lines.append(vsum[8]*(w))
|
|
return d, h + 2*more, lines, more
|
|
|
|
f = expr.function
|
|
|
|
prettyF = self._print(f)
|
|
|
|
if f.is_Add: # add parens
|
|
prettyF = prettyForm(*prettyF.parens())
|
|
|
|
H = prettyF.height() + 2
|
|
|
|
# \sum \sum \sum ...
|
|
first = True
|
|
max_upper = 0
|
|
sign_height = 0
|
|
|
|
for lim in expr.limits:
|
|
prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
|
|
|
|
max_upper = max(max_upper, prettyUpper.height())
|
|
|
|
# Create sum sign based on the height of the argument
|
|
d, h, slines, adjustment = asum(
|
|
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
|
|
prettySign = stringPict('')
|
|
prettySign = prettyForm(*prettySign.stack(*slines))
|
|
|
|
if first:
|
|
sign_height = prettySign.height()
|
|
|
|
prettySign = prettyForm(*prettySign.above(prettyUpper))
|
|
prettySign = prettyForm(*prettySign.below(prettyLower))
|
|
|
|
if first:
|
|
# change F baseline so it centers on the sign
|
|
prettyF.baseline -= d - (prettyF.height()//2 -
|
|
prettyF.baseline)
|
|
first = False
|
|
|
|
# put padding to the right
|
|
pad = stringPict('')
|
|
pad = prettyForm(*pad.stack(*[' ']*h))
|
|
prettySign = prettyForm(*prettySign.right(pad))
|
|
# put the present prettyF to the right
|
|
prettyF = prettyForm(*prettySign.right(prettyF))
|
|
|
|
# adjust baseline of ascii mode sigma with an odd height so that it is
|
|
# exactly through the center
|
|
ascii_adjustment = ascii_mode if not adjustment else 0
|
|
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
|
|
|
|
prettyF.binding = prettyForm.MUL
|
|
return prettyF
|
|
|
|
def _print_Limit(self, l):
|
|
e, z, z0, dir = l.args
|
|
|
|
E = self._print(e)
|
|
if precedence(e) <= PRECEDENCE["Mul"]:
|
|
E = prettyForm(*E.parens('(', ')'))
|
|
Lim = prettyForm('lim')
|
|
|
|
LimArg = self._print(z)
|
|
if self._use_unicode:
|
|
LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
|
|
else:
|
|
LimArg = prettyForm(*LimArg.right('->'))
|
|
LimArg = prettyForm(*LimArg.right(self._print(z0)))
|
|
|
|
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
|
|
dir = ""
|
|
else:
|
|
if self._use_unicode:
|
|
dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}'
|
|
|
|
LimArg = prettyForm(*LimArg.right(self._print(dir)))
|
|
|
|
Lim = prettyForm(*Lim.below(LimArg))
|
|
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
|
|
|
|
return Lim
|
|
|
|
def _print_matrix_contents(self, e):
|
|
"""
|
|
This method factors out what is essentially grid printing.
|
|
"""
|
|
M = e # matrix
|
|
Ms = {} # i,j -> pretty(M[i,j])
|
|
for i in range(M.rows):
|
|
for j in range(M.cols):
|
|
Ms[i, j] = self._print(M[i, j])
|
|
|
|
# h- and v- spacers
|
|
hsep = 2
|
|
vsep = 1
|
|
|
|
# max width for columns
|
|
maxw = [-1] * M.cols
|
|
|
|
for j in range(M.cols):
|
|
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
|
|
|
|
# drawing result
|
|
D = None
|
|
|
|
for i in range(M.rows):
|
|
|
|
D_row = None
|
|
for j in range(M.cols):
|
|
s = Ms[i, j]
|
|
|
|
# reshape s to maxw
|
|
# XXX this should be generalized, and go to stringPict.reshape ?
|
|
assert s.width() <= maxw[j]
|
|
|
|
# hcenter it, +0.5 to the right 2
|
|
# ( it's better to align formula starts for say 0 and r )
|
|
# XXX this is not good in all cases -- maybe introduce vbaseline?
|
|
wdelta = maxw[j] - s.width()
|
|
wleft = wdelta // 2
|
|
wright = wdelta - wleft
|
|
|
|
s = prettyForm(*s.right(' '*wright))
|
|
s = prettyForm(*s.left(' '*wleft))
|
|
|
|
# we don't need vcenter cells -- this is automatically done in
|
|
# a pretty way because when their baselines are taking into
|
|
# account in .right()
|
|
|
|
if D_row is None:
|
|
D_row = s # first box in a row
|
|
continue
|
|
|
|
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
|
|
D_row = prettyForm(*D_row.right(s))
|
|
|
|
if D is None:
|
|
D = D_row # first row in a picture
|
|
continue
|
|
|
|
# v-spacer
|
|
for _ in range(vsep):
|
|
D = prettyForm(*D.below(' '))
|
|
|
|
D = prettyForm(*D.below(D_row))
|
|
|
|
if D is None:
|
|
D = prettyForm('') # Empty Matrix
|
|
|
|
return D
|
|
|
|
def _print_MatrixBase(self, e, lparens='[', rparens=']'):
|
|
D = self._print_matrix_contents(e)
|
|
D.baseline = D.height()//2
|
|
D = prettyForm(*D.parens(lparens, rparens))
|
|
return D
|
|
|
|
def _print_Determinant(self, e):
|
|
mat = e.arg
|
|
if mat.is_MatrixExpr:
|
|
from sympy.matrices.expressions.blockmatrix import BlockMatrix
|
|
if isinstance(mat, BlockMatrix):
|
|
return self._print_MatrixBase(mat.blocks, lparens='|', rparens='|')
|
|
D = self._print(mat)
|
|
D.baseline = D.height()//2
|
|
return prettyForm(*D.parens('|', '|'))
|
|
else:
|
|
return self._print_MatrixBase(mat, lparens='|', rparens='|')
|
|
|
|
def _print_TensorProduct(self, expr):
|
|
# This should somehow share the code with _print_WedgeProduct:
|
|
if self._use_unicode:
|
|
circled_times = "\u2297"
|
|
else:
|
|
circled_times = ".*"
|
|
return self._print_seq(expr.args, None, None, circled_times,
|
|
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
|
|
|
|
def _print_WedgeProduct(self, expr):
|
|
# This should somehow share the code with _print_TensorProduct:
|
|
if self._use_unicode:
|
|
wedge_symbol = "\u2227"
|
|
else:
|
|
wedge_symbol = '/\\'
|
|
return self._print_seq(expr.args, None, None, wedge_symbol,
|
|
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
|
|
|
|
def _print_Trace(self, e):
|
|
D = self._print(e.arg)
|
|
D = prettyForm(*D.parens('(',')'))
|
|
D.baseline = D.height()//2
|
|
D = prettyForm(*D.left('\n'*(0) + 'tr'))
|
|
return D
|
|
|
|
|
|
def _print_MatrixElement(self, expr):
|
|
from sympy.matrices import MatrixSymbol
|
|
if (isinstance(expr.parent, MatrixSymbol)
|
|
and expr.i.is_number and expr.j.is_number):
|
|
return self._print(
|
|
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
|
|
else:
|
|
prettyFunc = self._print(expr.parent)
|
|
prettyFunc = prettyForm(*prettyFunc.parens())
|
|
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
|
|
).parens(left='[', right=']')[0]
|
|
pform = prettyForm(binding=prettyForm.FUNC,
|
|
*stringPict.next(prettyFunc, prettyIndices))
|
|
|
|
# store pform parts so it can be reassembled e.g. when powered
|
|
pform.prettyFunc = prettyFunc
|
|
pform.prettyArgs = prettyIndices
|
|
|
|
return pform
|
|
|
|
|
|
def _print_MatrixSlice(self, m):
|
|
# XXX works only for applied functions
|
|
from sympy.matrices import MatrixSymbol
|
|
prettyFunc = self._print(m.parent)
|
|
if not isinstance(m.parent, MatrixSymbol):
|
|
prettyFunc = prettyForm(*prettyFunc.parens())
|
|
def ppslice(x, dim):
|
|
x = list(x)
|
|
if x[2] == 1:
|
|
del x[2]
|
|
if x[0] == 0:
|
|
x[0] = ''
|
|
if x[1] == dim:
|
|
x[1] = ''
|
|
return prettyForm(*self._print_seq(x, delimiter=':'))
|
|
prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows),
|
|
ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0]
|
|
|
|
pform = prettyForm(
|
|
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
|
|
|
|
# store pform parts so it can be reassembled e.g. when powered
|
|
pform.prettyFunc = prettyFunc
|
|
pform.prettyArgs = prettyArgs
|
|
|
|
return pform
|
|
|
|
def _print_Transpose(self, expr):
|
|
mat = expr.arg
|
|
pform = self._print(mat)
|
|
from sympy.matrices import MatrixSymbol, BlockMatrix
|
|
if (not isinstance(mat, MatrixSymbol) and
|
|
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
|
|
pform = prettyForm(*pform.parens())
|
|
pform = pform**(prettyForm('T'))
|
|
return pform
|
|
|
|
def _print_Adjoint(self, expr):
|
|
mat = expr.arg
|
|
pform = self._print(mat)
|
|
if self._use_unicode:
|
|
dag = prettyForm('\N{DAGGER}')
|
|
else:
|
|
dag = prettyForm('+')
|
|
from sympy.matrices import MatrixSymbol, BlockMatrix
|
|
if (not isinstance(mat, MatrixSymbol) and
|
|
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
|
|
pform = prettyForm(*pform.parens())
|
|
pform = pform**dag
|
|
return pform
|
|
|
|
def _print_BlockMatrix(self, B):
|
|
if B.blocks.shape == (1, 1):
|
|
return self._print(B.blocks[0, 0])
|
|
return self._print(B.blocks)
|
|
|
|
def _print_MatAdd(self, expr):
|
|
s = None
|
|
for item in expr.args:
|
|
pform = self._print(item)
|
|
if s is None:
|
|
s = pform # First element
|
|
else:
|
|
coeff = item.as_coeff_mmul()[0]
|
|
if S(coeff).could_extract_minus_sign():
|
|
s = prettyForm(*stringPict.next(s, ' '))
|
|
pform = self._print(item)
|
|
else:
|
|
s = prettyForm(*stringPict.next(s, ' + '))
|
|
s = prettyForm(*stringPict.next(s, pform))
|
|
|
|
return s
|
|
|
|
def _print_MatMul(self, expr):
|
|
args = list(expr.args)
|
|
from sympy.matrices.expressions.hadamard import HadamardProduct
|
|
from sympy.matrices.expressions.kronecker import KroneckerProduct
|
|
from sympy.matrices.expressions.matadd import MatAdd
|
|
for i, a in enumerate(args):
|
|
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
|
|
and len(expr.args) > 1):
|
|
args[i] = prettyForm(*self._print(a).parens())
|
|
else:
|
|
args[i] = self._print(a)
|
|
|
|
return prettyForm.__mul__(*args)
|
|
|
|
def _print_Identity(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
|
|
else:
|
|
return prettyForm('I')
|
|
|
|
def _print_ZeroMatrix(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
|
|
else:
|
|
return prettyForm('0')
|
|
|
|
def _print_OneMatrix(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
|
|
else:
|
|
return prettyForm('1')
|
|
|
|
def _print_DotProduct(self, expr):
|
|
args = list(expr.args)
|
|
|
|
for i, a in enumerate(args):
|
|
args[i] = self._print(a)
|
|
return prettyForm.__mul__(*args)
|
|
|
|
def _print_MatPow(self, expr):
|
|
pform = self._print(expr.base)
|
|
from sympy.matrices import MatrixSymbol
|
|
if not isinstance(expr.base, MatrixSymbol) and expr.base.is_MatrixExpr:
|
|
pform = prettyForm(*pform.parens())
|
|
pform = pform**(self._print(expr.exp))
|
|
return pform
|
|
|
|
def _print_HadamardProduct(self, expr):
|
|
from sympy.matrices.expressions.hadamard import HadamardProduct
|
|
from sympy.matrices.expressions.matadd import MatAdd
|
|
from sympy.matrices.expressions.matmul import MatMul
|
|
if self._use_unicode:
|
|
delim = pretty_atom('Ring')
|
|
else:
|
|
delim = '.*'
|
|
return self._print_seq(expr.args, None, None, delim,
|
|
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
|
|
|
|
def _print_HadamardPower(self, expr):
|
|
# from sympy import MatAdd, MatMul
|
|
if self._use_unicode:
|
|
circ = pretty_atom('Ring')
|
|
else:
|
|
circ = self._print('.')
|
|
pretty_base = self._print(expr.base)
|
|
pretty_exp = self._print(expr.exp)
|
|
if precedence(expr.exp) < PRECEDENCE["Mul"]:
|
|
pretty_exp = prettyForm(*pretty_exp.parens())
|
|
pretty_circ_exp = prettyForm(
|
|
binding=prettyForm.LINE,
|
|
*stringPict.next(circ, pretty_exp)
|
|
)
|
|
return pretty_base**pretty_circ_exp
|
|
|
|
def _print_KroneckerProduct(self, expr):
|
|
from sympy.matrices.expressions.matadd import MatAdd
|
|
from sympy.matrices.expressions.matmul import MatMul
|
|
if self._use_unicode:
|
|
delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} '
|
|
else:
|
|
delim = ' x '
|
|
return self._print_seq(expr.args, None, None, delim,
|
|
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
|
|
|
|
def _print_FunctionMatrix(self, X):
|
|
D = self._print(X.lamda.expr)
|
|
D = prettyForm(*D.parens('[', ']'))
|
|
return D
|
|
|
|
def _print_TransferFunction(self, expr):
|
|
if not expr.num == 1:
|
|
num, den = expr.num, expr.den
|
|
res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
|
|
return self._print_Mul(res)
|
|
else:
|
|
return self._print(1)/self._print(expr.den)
|
|
|
|
def _print_Series(self, expr):
|
|
args = list(expr.args)
|
|
for i, a in enumerate(expr.args):
|
|
args[i] = prettyForm(*self._print(a).parens())
|
|
return prettyForm.__mul__(*args)
|
|
|
|
def _print_MIMOSeries(self, expr):
|
|
from sympy.physics.control.lti import MIMOParallel
|
|
args = list(expr.args)
|
|
pretty_args = []
|
|
for i, a in enumerate(reversed(args)):
|
|
if (isinstance(a, MIMOParallel) and len(expr.args) > 1):
|
|
expression = self._print(a)
|
|
expression.baseline = expression.height()//2
|
|
pretty_args.append(prettyForm(*expression.parens()))
|
|
else:
|
|
expression = self._print(a)
|
|
expression.baseline = expression.height()//2
|
|
pretty_args.append(expression)
|
|
return prettyForm.__mul__(*pretty_args)
|
|
|
|
def _print_Parallel(self, expr):
|
|
s = None
|
|
for item in expr.args:
|
|
pform = self._print(item)
|
|
if s is None:
|
|
s = pform # First element
|
|
else:
|
|
s = prettyForm(*stringPict.next(s))
|
|
s.baseline = s.height()//2
|
|
s = prettyForm(*stringPict.next(s, ' + '))
|
|
s = prettyForm(*stringPict.next(s, pform))
|
|
return s
|
|
|
|
def _print_MIMOParallel(self, expr):
|
|
from sympy.physics.control.lti import TransferFunctionMatrix
|
|
s = None
|
|
for item in expr.args:
|
|
pform = self._print(item)
|
|
if s is None:
|
|
s = pform # First element
|
|
else:
|
|
s = prettyForm(*stringPict.next(s))
|
|
s.baseline = s.height()//2
|
|
s = prettyForm(*stringPict.next(s, ' + '))
|
|
if isinstance(item, TransferFunctionMatrix):
|
|
s.baseline = s.height() - 1
|
|
s = prettyForm(*stringPict.next(s, pform))
|
|
# s.baseline = s.height()//2
|
|
return s
|
|
|
|
def _print_Feedback(self, expr):
|
|
from sympy.physics.control import TransferFunction, Series
|
|
|
|
num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
|
|
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
|
|
den_arg_list = list(expr.sys2.args) if \
|
|
isinstance(expr.sys2, Series) else [expr.sys2]
|
|
|
|
if isinstance(num, Series) and isinstance(expr.sys2, Series):
|
|
den = Series(*num_arg_list, *den_arg_list)
|
|
elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
|
|
if expr.sys2 == tf:
|
|
den = Series(*num_arg_list)
|
|
else:
|
|
den = Series(*num_arg_list, expr.sys2)
|
|
elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
|
|
if num == tf:
|
|
den = Series(*den_arg_list)
|
|
else:
|
|
den = Series(num, *den_arg_list)
|
|
else:
|
|
if num == tf:
|
|
den = Series(*den_arg_list)
|
|
elif expr.sys2 == tf:
|
|
den = Series(*num_arg_list)
|
|
else:
|
|
den = Series(*num_arg_list, *den_arg_list)
|
|
|
|
denom = prettyForm(*stringPict.next(self._print(tf)))
|
|
denom.baseline = denom.height()//2
|
|
denom = prettyForm(*stringPict.next(denom, ' + ')) if expr.sign == -1 \
|
|
else prettyForm(*stringPict.next(denom, ' - '))
|
|
denom = prettyForm(*stringPict.next(denom, self._print(den)))
|
|
|
|
return self._print(num)/denom
|
|
|
|
def _print_MIMOFeedback(self, expr):
|
|
from sympy.physics.control import MIMOSeries, TransferFunctionMatrix
|
|
|
|
inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
|
|
plant = self._print(expr.sys1)
|
|
_feedback = prettyForm(*stringPict.next(inv_mat))
|
|
_feedback = prettyForm(*stringPict.right("I + ", _feedback)) if expr.sign == -1 \
|
|
else prettyForm(*stringPict.right("I - ", _feedback))
|
|
_feedback = prettyForm(*stringPict.parens(_feedback))
|
|
_feedback.baseline = 0
|
|
_feedback = prettyForm(*stringPict.right(_feedback, '-1 '))
|
|
_feedback.baseline = _feedback.height()//2
|
|
_feedback = prettyForm.__mul__(_feedback, prettyForm(" "))
|
|
if isinstance(expr.sys1, TransferFunctionMatrix):
|
|
_feedback.baseline = _feedback.height() - 1
|
|
_feedback = prettyForm(*stringPict.next(_feedback, plant))
|
|
return _feedback
|
|
|
|
def _print_TransferFunctionMatrix(self, expr):
|
|
mat = self._print(expr._expr_mat)
|
|
mat.baseline = mat.height() - 1
|
|
subscript = greek_unicode['tau'] if self._use_unicode else r'{t}'
|
|
mat = prettyForm(*mat.right(subscript))
|
|
return mat
|
|
|
|
def _print_BasisDependent(self, expr):
|
|
from sympy.vector import Vector
|
|
|
|
if not self._use_unicode:
|
|
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
|
|
|
|
if expr == expr.zero:
|
|
return prettyForm(expr.zero._pretty_form)
|
|
o1 = []
|
|
vectstrs = []
|
|
if isinstance(expr, Vector):
|
|
items = expr.separate().items()
|
|
else:
|
|
items = [(0, expr)]
|
|
for system, vect in items:
|
|
inneritems = list(vect.components.items())
|
|
inneritems.sort(key = lambda x: x[0].__str__())
|
|
for k, v in inneritems:
|
|
#if the coef of the basis vector is 1
|
|
#we skip the 1
|
|
if v == 1:
|
|
o1.append("" +
|
|
k._pretty_form)
|
|
#Same for -1
|
|
elif v == -1:
|
|
o1.append("(-1) " +
|
|
k._pretty_form)
|
|
#For a general expr
|
|
else:
|
|
#We always wrap the measure numbers in
|
|
#parentheses
|
|
arg_str = self._print(
|
|
v).parens()[0]
|
|
|
|
o1.append(arg_str + ' ' + k._pretty_form)
|
|
vectstrs.append(k._pretty_form)
|
|
|
|
#outstr = u("").join(o1)
|
|
if o1[0].startswith(" + "):
|
|
o1[0] = o1[0][3:]
|
|
elif o1[0].startswith(" "):
|
|
o1[0] = o1[0][1:]
|
|
#Fixing the newlines
|
|
lengths = []
|
|
strs = ['']
|
|
flag = []
|
|
for i, partstr in enumerate(o1):
|
|
flag.append(0)
|
|
# XXX: What is this hack?
|
|
if '\n' in partstr:
|
|
tempstr = partstr
|
|
tempstr = tempstr.replace(vectstrs[i], '')
|
|
if '\N{RIGHT PARENTHESIS EXTENSION}' in tempstr: # If scalar is a fraction
|
|
for paren in range(len(tempstr)):
|
|
flag[i] = 1
|
|
if tempstr[paren] == '\N{RIGHT PARENTHESIS EXTENSION}' and tempstr[paren + 1] == '\n':
|
|
# We want to place the vector string after all the right parentheses, because
|
|
# otherwise, the vector will be in the middle of the string
|
|
tempstr = tempstr[:paren] + '\N{RIGHT PARENTHESIS EXTENSION}'\
|
|
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
|
|
break
|
|
elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
|
|
# We want to place the vector string after all the right parentheses, because
|
|
# otherwise, the vector will be in the middle of the string. For this reason,
|
|
# we insert the vector string at the rightmost index.
|
|
index = tempstr.rfind('\N{RIGHT PARENTHESIS LOWER HOOK}')
|
|
if index != -1: # then this character was found in this string
|
|
flag[i] = 1
|
|
tempstr = tempstr[:index] + '\N{RIGHT PARENTHESIS LOWER HOOK}'\
|
|
+ ' ' + vectstrs[i] + tempstr[index + 1:]
|
|
o1[i] = tempstr
|
|
|
|
o1 = [x.split('\n') for x in o1]
|
|
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
|
|
|
|
if 1 in flag: # If there was a fractional scalar
|
|
for i, parts in enumerate(o1):
|
|
if len(parts) == 1: # If part has no newline
|
|
parts.insert(0, ' ' * (len(parts[0])))
|
|
flag[i] = 1
|
|
|
|
for i, parts in enumerate(o1):
|
|
lengths.append(len(parts[flag[i]]))
|
|
for j in range(n_newlines):
|
|
if j+1 <= len(parts):
|
|
if j >= len(strs):
|
|
strs.append(' ' * (sum(lengths[:-1]) +
|
|
3*(len(lengths)-1)))
|
|
if j == flag[i]:
|
|
strs[flag[i]] += parts[flag[i]] + ' + '
|
|
else:
|
|
strs[j] += parts[j] + ' '*(lengths[-1] -
|
|
len(parts[j])+
|
|
3)
|
|
else:
|
|
if j >= len(strs):
|
|
strs.append(' ' * (sum(lengths[:-1]) +
|
|
3*(len(lengths)-1)))
|
|
strs[j] += ' '*(lengths[-1]+3)
|
|
|
|
return prettyForm('\n'.join([s[:-3] for s in strs]))
|
|
|
|
def _print_NDimArray(self, expr):
|
|
from sympy.matrices.immutable import ImmutableMatrix
|
|
|
|
if expr.rank() == 0:
|
|
return self._print(expr[()])
|
|
|
|
level_str = [[]] + [[] for i in range(expr.rank())]
|
|
shape_ranges = [list(range(i)) for i in expr.shape]
|
|
# leave eventual matrix elements unflattened
|
|
mat = lambda x: ImmutableMatrix(x, evaluate=False)
|
|
for outer_i in itertools.product(*shape_ranges):
|
|
level_str[-1].append(expr[outer_i])
|
|
even = True
|
|
for back_outer_i in range(expr.rank()-1, -1, -1):
|
|
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
|
|
break
|
|
if even:
|
|
level_str[back_outer_i].append(level_str[back_outer_i+1])
|
|
else:
|
|
level_str[back_outer_i].append(mat(
|
|
level_str[back_outer_i+1]))
|
|
if len(level_str[back_outer_i + 1]) == 1:
|
|
level_str[back_outer_i][-1] = mat(
|
|
[[level_str[back_outer_i][-1]]])
|
|
even = not even
|
|
level_str[back_outer_i+1] = []
|
|
|
|
out_expr = level_str[0][0]
|
|
if expr.rank() % 2 == 1:
|
|
out_expr = mat([out_expr])
|
|
|
|
return self._print(out_expr)
|
|
|
|
def _printer_tensor_indices(self, name, indices, index_map={}):
|
|
center = stringPict(name)
|
|
top = stringPict(" "*center.width())
|
|
bot = stringPict(" "*center.width())
|
|
|
|
last_valence = None
|
|
prev_map = None
|
|
|
|
for i, index in enumerate(indices):
|
|
indpic = self._print(index.args[0])
|
|
if ((index in index_map) or prev_map) and last_valence == index.is_up:
|
|
if index.is_up:
|
|
top = prettyForm(*stringPict.next(top, ","))
|
|
else:
|
|
bot = prettyForm(*stringPict.next(bot, ","))
|
|
if index in index_map:
|
|
indpic = prettyForm(*stringPict.next(indpic, "="))
|
|
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
|
|
prev_map = True
|
|
else:
|
|
prev_map = False
|
|
if index.is_up:
|
|
top = stringPict(*top.right(indpic))
|
|
center = stringPict(*center.right(" "*indpic.width()))
|
|
bot = stringPict(*bot.right(" "*indpic.width()))
|
|
else:
|
|
bot = stringPict(*bot.right(indpic))
|
|
center = stringPict(*center.right(" "*indpic.width()))
|
|
top = stringPict(*top.right(" "*indpic.width()))
|
|
last_valence = index.is_up
|
|
|
|
pict = prettyForm(*center.above(top))
|
|
pict = prettyForm(*pict.below(bot))
|
|
return pict
|
|
|
|
def _print_Tensor(self, expr):
|
|
name = expr.args[0].name
|
|
indices = expr.get_indices()
|
|
return self._printer_tensor_indices(name, indices)
|
|
|
|
def _print_TensorElement(self, expr):
|
|
name = expr.expr.args[0].name
|
|
indices = expr.expr.get_indices()
|
|
index_map = expr.index_map
|
|
return self._printer_tensor_indices(name, indices, index_map)
|
|
|
|
def _print_TensMul(self, expr):
|
|
sign, args = expr._get_args_for_traditional_printer()
|
|
args = [
|
|
prettyForm(*self._print(i).parens()) if
|
|
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
|
|
for i in args
|
|
]
|
|
pform = prettyForm.__mul__(*args)
|
|
if sign:
|
|
return prettyForm(*pform.left(sign))
|
|
else:
|
|
return pform
|
|
|
|
def _print_TensAdd(self, expr):
|
|
args = [
|
|
prettyForm(*self._print(i).parens()) if
|
|
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
|
|
for i in expr.args
|
|
]
|
|
return prettyForm.__add__(*args)
|
|
|
|
def _print_TensorIndex(self, expr):
|
|
sym = expr.args[0]
|
|
if not expr.is_up:
|
|
sym = -sym
|
|
return self._print(sym)
|
|
|
|
def _print_PartialDerivative(self, deriv):
|
|
if self._use_unicode:
|
|
deriv_symbol = U('PARTIAL DIFFERENTIAL')
|
|
else:
|
|
deriv_symbol = r'd'
|
|
x = None
|
|
|
|
for variable in reversed(deriv.variables):
|
|
s = self._print(variable)
|
|
ds = prettyForm(*s.left(deriv_symbol))
|
|
|
|
if x is None:
|
|
x = ds
|
|
else:
|
|
x = prettyForm(*x.right(' '))
|
|
x = prettyForm(*x.right(ds))
|
|
|
|
f = prettyForm(
|
|
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
|
|
|
|
pform = prettyForm(deriv_symbol)
|
|
|
|
if len(deriv.variables) > 1:
|
|
pform = pform**self._print(len(deriv.variables))
|
|
|
|
pform = prettyForm(*pform.below(stringPict.LINE, x))
|
|
pform.baseline = pform.baseline + 1
|
|
pform = prettyForm(*stringPict.next(pform, f))
|
|
pform.binding = prettyForm.MUL
|
|
|
|
return pform
|
|
|
|
def _print_Piecewise(self, pexpr):
|
|
|
|
P = {}
|
|
for n, ec in enumerate(pexpr.args):
|
|
P[n, 0] = self._print(ec.expr)
|
|
if ec.cond == True:
|
|
P[n, 1] = prettyForm('otherwise')
|
|
else:
|
|
P[n, 1] = prettyForm(
|
|
*prettyForm('for ').right(self._print(ec.cond)))
|
|
hsep = 2
|
|
vsep = 1
|
|
len_args = len(pexpr.args)
|
|
|
|
# max widths
|
|
maxw = [max([P[i, j].width() for i in range(len_args)])
|
|
for j in range(2)]
|
|
|
|
# FIXME: Refactor this code and matrix into some tabular environment.
|
|
# drawing result
|
|
D = None
|
|
|
|
for i in range(len_args):
|
|
D_row = None
|
|
for j in range(2):
|
|
p = P[i, j]
|
|
assert p.width() <= maxw[j]
|
|
|
|
wdelta = maxw[j] - p.width()
|
|
wleft = wdelta // 2
|
|
wright = wdelta - wleft
|
|
|
|
p = prettyForm(*p.right(' '*wright))
|
|
p = prettyForm(*p.left(' '*wleft))
|
|
|
|
if D_row is None:
|
|
D_row = p
|
|
continue
|
|
|
|
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
|
|
D_row = prettyForm(*D_row.right(p))
|
|
if D is None:
|
|
D = D_row # first row in a picture
|
|
continue
|
|
|
|
# v-spacer
|
|
for _ in range(vsep):
|
|
D = prettyForm(*D.below(' '))
|
|
|
|
D = prettyForm(*D.below(D_row))
|
|
|
|
D = prettyForm(*D.parens('{', ''))
|
|
D.baseline = D.height()//2
|
|
D.binding = prettyForm.OPEN
|
|
return D
|
|
|
|
def _print_ITE(self, ite):
|
|
from sympy.functions.elementary.piecewise import Piecewise
|
|
return self._print(ite.rewrite(Piecewise))
|
|
|
|
def _hprint_vec(self, v):
|
|
D = None
|
|
|
|
for a in v:
|
|
p = a
|
|
if D is None:
|
|
D = p
|
|
else:
|
|
D = prettyForm(*D.right(', '))
|
|
D = prettyForm(*D.right(p))
|
|
if D is None:
|
|
D = stringPict(' ')
|
|
|
|
return D
|
|
|
|
def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False):
|
|
if ifascii_nougly and not self._use_unicode:
|
|
return self._print_seq((p1, '|', p2), left=left, right=right,
|
|
delimiter=delimiter, ifascii_nougly=True)
|
|
tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter)
|
|
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
|
|
return self._print_seq((p1, sep, p2), left=left, right=right,
|
|
delimiter=delimiter)
|
|
|
|
def _print_hyper(self, e):
|
|
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
|
|
ap = [self._print(a) for a in e.ap]
|
|
bq = [self._print(b) for b in e.bq]
|
|
|
|
P = self._print(e.argument)
|
|
P.baseline = P.height()//2
|
|
|
|
# Drawing result - first create the ap, bq vectors
|
|
D = None
|
|
for v in [ap, bq]:
|
|
D_row = self._hprint_vec(v)
|
|
if D is None:
|
|
D = D_row # first row in a picture
|
|
else:
|
|
D = prettyForm(*D.below(' '))
|
|
D = prettyForm(*D.below(D_row))
|
|
|
|
# make sure that the argument `z' is centred vertically
|
|
D.baseline = D.height()//2
|
|
|
|
# insert horizontal separator
|
|
P = prettyForm(*P.left(' '))
|
|
D = prettyForm(*D.right(' '))
|
|
|
|
# insert separating `|`
|
|
D = self._hprint_vseparator(D, P)
|
|
|
|
# add parens
|
|
D = prettyForm(*D.parens('(', ')'))
|
|
|
|
# create the F symbol
|
|
above = D.height()//2 - 1
|
|
below = D.height() - above - 1
|
|
|
|
sz, t, b, add, img = annotated('F')
|
|
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
|
|
baseline=above + sz)
|
|
add = (sz + 1)//2
|
|
|
|
F = prettyForm(*F.left(self._print(len(e.ap))))
|
|
F = prettyForm(*F.right(self._print(len(e.bq))))
|
|
F.baseline = above + add
|
|
|
|
D = prettyForm(*F.right(' ', D))
|
|
|
|
return D
|
|
|
|
def _print_meijerg(self, e):
|
|
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
|
|
|
|
v = {}
|
|
v[(0, 0)] = [self._print(a) for a in e.an]
|
|
v[(0, 1)] = [self._print(a) for a in e.aother]
|
|
v[(1, 0)] = [self._print(b) for b in e.bm]
|
|
v[(1, 1)] = [self._print(b) for b in e.bother]
|
|
|
|
P = self._print(e.argument)
|
|
P.baseline = P.height()//2
|
|
|
|
vp = {}
|
|
for idx in v:
|
|
vp[idx] = self._hprint_vec(v[idx])
|
|
|
|
for i in range(2):
|
|
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
|
|
for j in range(2):
|
|
s = vp[(j, i)]
|
|
left = (maxw - s.width()) // 2
|
|
right = maxw - left - s.width()
|
|
s = prettyForm(*s.left(' ' * left))
|
|
s = prettyForm(*s.right(' ' * right))
|
|
vp[(j, i)] = s
|
|
|
|
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
|
|
D1 = prettyForm(*D1.below(' '))
|
|
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
|
|
D = prettyForm(*D1.below(D2))
|
|
|
|
# make sure that the argument `z' is centred vertically
|
|
D.baseline = D.height()//2
|
|
|
|
# insert horizontal separator
|
|
P = prettyForm(*P.left(' '))
|
|
D = prettyForm(*D.right(' '))
|
|
|
|
# insert separating `|`
|
|
D = self._hprint_vseparator(D, P)
|
|
|
|
# add parens
|
|
D = prettyForm(*D.parens('(', ')'))
|
|
|
|
# create the G symbol
|
|
above = D.height()//2 - 1
|
|
below = D.height() - above - 1
|
|
|
|
sz, t, b, add, img = annotated('G')
|
|
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
|
|
baseline=above + sz)
|
|
|
|
pp = self._print(len(e.ap))
|
|
pq = self._print(len(e.bq))
|
|
pm = self._print(len(e.bm))
|
|
pn = self._print(len(e.an))
|
|
|
|
def adjust(p1, p2):
|
|
diff = p1.width() - p2.width()
|
|
if diff == 0:
|
|
return p1, p2
|
|
elif diff > 0:
|
|
return p1, prettyForm(*p2.left(' '*diff))
|
|
else:
|
|
return prettyForm(*p1.left(' '*-diff)), p2
|
|
pp, pm = adjust(pp, pm)
|
|
pq, pn = adjust(pq, pn)
|
|
pu = prettyForm(*pm.right(', ', pn))
|
|
pl = prettyForm(*pp.right(', ', pq))
|
|
|
|
ht = F.baseline - above - 2
|
|
if ht > 0:
|
|
pu = prettyForm(*pu.below('\n'*ht))
|
|
p = prettyForm(*pu.below(pl))
|
|
|
|
F.baseline = above
|
|
F = prettyForm(*F.right(p))
|
|
|
|
F.baseline = above + add
|
|
|
|
D = prettyForm(*F.right(' ', D))
|
|
|
|
return D
|
|
|
|
def _print_ExpBase(self, e):
|
|
# TODO should exp_polar be printed differently?
|
|
# what about exp_polar(0), exp_polar(1)?
|
|
base = prettyForm(pretty_atom('Exp1', 'e'))
|
|
return base ** self._print(e.args[0])
|
|
|
|
def _print_Exp1(self, e):
|
|
return prettyForm(pretty_atom('Exp1', 'e'))
|
|
|
|
def _print_Function(self, e, sort=False, func_name=None, left='(',
|
|
right=')'):
|
|
# optional argument func_name for supplying custom names
|
|
# XXX works only for applied functions
|
|
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name, left=left, right=right)
|
|
|
|
def _print_mathieuc(self, e):
|
|
return self._print_Function(e, func_name='C')
|
|
|
|
def _print_mathieus(self, e):
|
|
return self._print_Function(e, func_name='S')
|
|
|
|
def _print_mathieucprime(self, e):
|
|
return self._print_Function(e, func_name="C'")
|
|
|
|
def _print_mathieusprime(self, e):
|
|
return self._print_Function(e, func_name="S'")
|
|
|
|
def _helper_print_function(self, func, args, sort=False, func_name=None,
|
|
delimiter=', ', elementwise=False, left='(',
|
|
right=')'):
|
|
if sort:
|
|
args = sorted(args, key=default_sort_key)
|
|
|
|
if not func_name and hasattr(func, "__name__"):
|
|
func_name = func.__name__
|
|
|
|
if func_name:
|
|
prettyFunc = self._print(Symbol(func_name))
|
|
else:
|
|
prettyFunc = prettyForm(*self._print(func).parens())
|
|
|
|
if elementwise:
|
|
if self._use_unicode:
|
|
circ = pretty_atom('Modifier Letter Low Ring')
|
|
else:
|
|
circ = '.'
|
|
circ = self._print(circ)
|
|
prettyFunc = prettyForm(
|
|
binding=prettyForm.LINE,
|
|
*stringPict.next(prettyFunc, circ)
|
|
)
|
|
|
|
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens(
|
|
left=left, right=right))
|
|
|
|
pform = prettyForm(
|
|
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
|
|
|
|
# store pform parts so it can be reassembled e.g. when powered
|
|
pform.prettyFunc = prettyFunc
|
|
pform.prettyArgs = prettyArgs
|
|
|
|
return pform
|
|
|
|
def _print_ElementwiseApplyFunction(self, e):
|
|
func = e.function
|
|
arg = e.expr
|
|
args = [arg]
|
|
return self._helper_print_function(func, args, delimiter="", elementwise=True)
|
|
|
|
@property
|
|
def _special_function_classes(self):
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.functions.special.gamma_functions import gamma, lowergamma
|
|
from sympy.functions.special.zeta_functions import lerchphi
|
|
from sympy.functions.special.beta_functions import beta
|
|
from sympy.functions.special.delta_functions import DiracDelta
|
|
from sympy.functions.special.error_functions import Chi
|
|
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
|
|
gamma: [greek_unicode['Gamma'], 'Gamma'],
|
|
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
|
|
lowergamma: [greek_unicode['gamma'], 'gamma'],
|
|
beta: [greek_unicode['Beta'], 'B'],
|
|
DiracDelta: [greek_unicode['delta'], 'delta'],
|
|
Chi: ['Chi', 'Chi']}
|
|
|
|
def _print_FunctionClass(self, expr):
|
|
for cls in self._special_function_classes:
|
|
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
|
|
if self._use_unicode:
|
|
return prettyForm(self._special_function_classes[cls][0])
|
|
else:
|
|
return prettyForm(self._special_function_classes[cls][1])
|
|
func_name = expr.__name__
|
|
return prettyForm(pretty_symbol(func_name))
|
|
|
|
def _print_GeometryEntity(self, expr):
|
|
# GeometryEntity is based on Tuple but should not print like a Tuple
|
|
return self.emptyPrinter(expr)
|
|
|
|
def _print_lerchphi(self, e):
|
|
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_dirichlet_eta(self, e):
|
|
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_Heaviside(self, e):
|
|
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
|
|
if e.args[1] is S.Half:
|
|
pform = prettyForm(*self._print(e.args[0]).parens())
|
|
pform = prettyForm(*pform.left(func_name))
|
|
return pform
|
|
else:
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_fresnels(self, e):
|
|
return self._print_Function(e, func_name="S")
|
|
|
|
def _print_fresnelc(self, e):
|
|
return self._print_Function(e, func_name="C")
|
|
|
|
def _print_airyai(self, e):
|
|
return self._print_Function(e, func_name="Ai")
|
|
|
|
def _print_airybi(self, e):
|
|
return self._print_Function(e, func_name="Bi")
|
|
|
|
def _print_airyaiprime(self, e):
|
|
return self._print_Function(e, func_name="Ai'")
|
|
|
|
def _print_airybiprime(self, e):
|
|
return self._print_Function(e, func_name="Bi'")
|
|
|
|
def _print_LambertW(self, e):
|
|
return self._print_Function(e, func_name="W")
|
|
|
|
def _print_Covariance(self, e):
|
|
return self._print_Function(e, func_name="Cov")
|
|
|
|
def _print_Variance(self, e):
|
|
return self._print_Function(e, func_name="Var")
|
|
|
|
def _print_Probability(self, e):
|
|
return self._print_Function(e, func_name="P")
|
|
|
|
def _print_Expectation(self, e):
|
|
return self._print_Function(e, func_name="E", left='[', right=']')
|
|
|
|
def _print_Lambda(self, e):
|
|
expr = e.expr
|
|
sig = e.signature
|
|
if self._use_unicode:
|
|
arrow = " \N{RIGHTWARDS ARROW FROM BAR} "
|
|
else:
|
|
arrow = " -> "
|
|
if len(sig) == 1 and sig[0].is_symbol:
|
|
sig = sig[0]
|
|
var_form = self._print(sig)
|
|
|
|
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
|
|
|
|
def _print_Order(self, expr):
|
|
pform = self._print(expr.expr)
|
|
if (expr.point and any(p != S.Zero for p in expr.point)) or \
|
|
len(expr.variables) > 1:
|
|
pform = prettyForm(*pform.right("; "))
|
|
if len(expr.variables) > 1:
|
|
pform = prettyForm(*pform.right(self._print(expr.variables)))
|
|
elif len(expr.variables):
|
|
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
|
|
if self._use_unicode:
|
|
pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} "))
|
|
else:
|
|
pform = prettyForm(*pform.right(" -> "))
|
|
if len(expr.point) > 1:
|
|
pform = prettyForm(*pform.right(self._print(expr.point)))
|
|
else:
|
|
pform = prettyForm(*pform.right(self._print(expr.point[0])))
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left("O"))
|
|
return pform
|
|
|
|
def _print_SingularityFunction(self, e):
|
|
if self._use_unicode:
|
|
shift = self._print(e.args[0]-e.args[1])
|
|
n = self._print(e.args[2])
|
|
base = prettyForm("<")
|
|
base = prettyForm(*base.right(shift))
|
|
base = prettyForm(*base.right(">"))
|
|
pform = base**n
|
|
return pform
|
|
else:
|
|
n = self._print(e.args[2])
|
|
shift = self._print(e.args[0]-e.args[1])
|
|
base = self._print_seq(shift, "<", ">", ' ')
|
|
return base**n
|
|
|
|
def _print_beta(self, e):
|
|
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_betainc(self, e):
|
|
func_name = "B'"
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_betainc_regularized(self, e):
|
|
func_name = 'I'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_gamma(self, e):
|
|
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_uppergamma(self, e):
|
|
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_lowergamma(self, e):
|
|
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
|
|
return self._print_Function(e, func_name=func_name)
|
|
|
|
def _print_DiracDelta(self, e):
|
|
if self._use_unicode:
|
|
if len(e.args) == 2:
|
|
a = prettyForm(greek_unicode['delta'])
|
|
b = self._print(e.args[1])
|
|
b = prettyForm(*b.parens())
|
|
c = self._print(e.args[0])
|
|
c = prettyForm(*c.parens())
|
|
pform = a**b
|
|
pform = prettyForm(*pform.right(' '))
|
|
pform = prettyForm(*pform.right(c))
|
|
return pform
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left(greek_unicode['delta']))
|
|
return pform
|
|
else:
|
|
return self._print_Function(e)
|
|
|
|
def _print_expint(self, e):
|
|
if e.args[0].is_Integer and self._use_unicode:
|
|
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
|
|
return self._print_Function(e)
|
|
|
|
def _print_Chi(self, e):
|
|
# This needs a special case since otherwise it comes out as greek
|
|
# letter chi...
|
|
prettyFunc = prettyForm("Chi")
|
|
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
|
|
|
|
pform = prettyForm(
|
|
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
|
|
|
|
# store pform parts so it can be reassembled e.g. when powered
|
|
pform.prettyFunc = prettyFunc
|
|
pform.prettyArgs = prettyArgs
|
|
|
|
return pform
|
|
|
|
def _print_elliptic_e(self, e):
|
|
pforma0 = self._print(e.args[0])
|
|
if len(e.args) == 1:
|
|
pform = pforma0
|
|
else:
|
|
pforma1 = self._print(e.args[1])
|
|
pform = self._hprint_vseparator(pforma0, pforma1)
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left('E'))
|
|
return pform
|
|
|
|
def _print_elliptic_k(self, e):
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left('K'))
|
|
return pform
|
|
|
|
def _print_elliptic_f(self, e):
|
|
pforma0 = self._print(e.args[0])
|
|
pforma1 = self._print(e.args[1])
|
|
pform = self._hprint_vseparator(pforma0, pforma1)
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left('F'))
|
|
return pform
|
|
|
|
def _print_elliptic_pi(self, e):
|
|
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
|
|
pforma0 = self._print(e.args[0])
|
|
pforma1 = self._print(e.args[1])
|
|
if len(e.args) == 2:
|
|
pform = self._hprint_vseparator(pforma0, pforma1)
|
|
else:
|
|
pforma2 = self._print(e.args[2])
|
|
pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False)
|
|
pforma = prettyForm(*pforma.left('; '))
|
|
pform = prettyForm(*pforma.left(pforma0))
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left(name))
|
|
return pform
|
|
|
|
def _print_GoldenRatio(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm(pretty_symbol('phi'))
|
|
return self._print(Symbol("GoldenRatio"))
|
|
|
|
def _print_EulerGamma(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm(pretty_symbol('gamma'))
|
|
return self._print(Symbol("EulerGamma"))
|
|
|
|
def _print_Catalan(self, expr):
|
|
return self._print(Symbol("G"))
|
|
|
|
def _print_Mod(self, expr):
|
|
pform = self._print(expr.args[0])
|
|
if pform.binding > prettyForm.MUL:
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.right(' mod '))
|
|
pform = prettyForm(*pform.right(self._print(expr.args[1])))
|
|
pform.binding = prettyForm.OPEN
|
|
return pform
|
|
|
|
def _print_Add(self, expr, order=None):
|
|
terms = self._as_ordered_terms(expr, order=order)
|
|
pforms, indices = [], []
|
|
|
|
def pretty_negative(pform, index):
|
|
"""Prepend a minus sign to a pretty form. """
|
|
#TODO: Move this code to prettyForm
|
|
if index == 0:
|
|
if pform.height() > 1:
|
|
pform_neg = '- '
|
|
else:
|
|
pform_neg = '-'
|
|
else:
|
|
pform_neg = ' - '
|
|
|
|
if (pform.binding > prettyForm.NEG
|
|
or pform.binding == prettyForm.ADD):
|
|
p = stringPict(*pform.parens())
|
|
else:
|
|
p = pform
|
|
p = stringPict.next(pform_neg, p)
|
|
# Lower the binding to NEG, even if it was higher. Otherwise, it
|
|
# will print as a + ( - (b)), instead of a - (b).
|
|
return prettyForm(binding=prettyForm.NEG, *p)
|
|
|
|
for i, term in enumerate(terms):
|
|
if term.is_Mul and term.could_extract_minus_sign():
|
|
coeff, other = term.as_coeff_mul(rational=False)
|
|
if coeff == -1:
|
|
negterm = Mul(*other, evaluate=False)
|
|
else:
|
|
negterm = Mul(-coeff, *other, evaluate=False)
|
|
pform = self._print(negterm)
|
|
pforms.append(pretty_negative(pform, i))
|
|
elif term.is_Rational and term.q > 1:
|
|
pforms.append(None)
|
|
indices.append(i)
|
|
elif term.is_Number and term < 0:
|
|
pform = self._print(-term)
|
|
pforms.append(pretty_negative(pform, i))
|
|
elif term.is_Relational:
|
|
pforms.append(prettyForm(*self._print(term).parens()))
|
|
else:
|
|
pforms.append(self._print(term))
|
|
|
|
if indices:
|
|
large = True
|
|
|
|
for pform in pforms:
|
|
if pform is not None and pform.height() > 1:
|
|
break
|
|
else:
|
|
large = False
|
|
|
|
for i in indices:
|
|
term, negative = terms[i], False
|
|
|
|
if term < 0:
|
|
term, negative = -term, True
|
|
|
|
if large:
|
|
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
|
|
else:
|
|
pform = self._print(term)
|
|
|
|
if negative:
|
|
pform = pretty_negative(pform, i)
|
|
|
|
pforms[i] = pform
|
|
|
|
return prettyForm.__add__(*pforms)
|
|
|
|
def _print_Mul(self, product):
|
|
from sympy.physics.units import Quantity
|
|
|
|
# Check for unevaluated Mul. In this case we need to make sure the
|
|
# identities are visible, multiple Rational factors are not combined
|
|
# etc so we display in a straight-forward form that fully preserves all
|
|
# args and their order.
|
|
args = product.args
|
|
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
|
|
strargs = list(map(self._print, args))
|
|
# XXX: This is a hack to work around the fact that
|
|
# prettyForm.__mul__ absorbs a leading -1 in the args. Probably it
|
|
# would be better to fix this in prettyForm.__mul__ instead.
|
|
negone = strargs[0] == '-1'
|
|
if negone:
|
|
strargs[0] = prettyForm('1', 0, 0)
|
|
obj = prettyForm.__mul__(*strargs)
|
|
if negone:
|
|
obj = prettyForm('-' + obj.s, obj.baseline, obj.binding)
|
|
return obj
|
|
|
|
a = [] # items in the numerator
|
|
b = [] # items that are in the denominator (if any)
|
|
|
|
if self.order not in ('old', 'none'):
|
|
args = product.as_ordered_factors()
|
|
else:
|
|
args = list(product.args)
|
|
|
|
# If quantities are present append them at the back
|
|
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
|
|
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
|
|
|
|
# Gather terms for numerator/denominator
|
|
for item in args:
|
|
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
|
|
if item.exp != -1:
|
|
b.append(Pow(item.base, -item.exp, evaluate=False))
|
|
else:
|
|
b.append(Pow(item.base, -item.exp))
|
|
elif item.is_Rational and item is not S.Infinity:
|
|
if item.p != 1:
|
|
a.append( Rational(item.p) )
|
|
if item.q != 1:
|
|
b.append( Rational(item.q) )
|
|
else:
|
|
a.append(item)
|
|
|
|
# Convert to pretty forms. Parentheses are added by `__mul__`.
|
|
a = [self._print(ai) for ai in a]
|
|
b = [self._print(bi) for bi in b]
|
|
|
|
# Construct a pretty form
|
|
if len(b) == 0:
|
|
return prettyForm.__mul__(*a)
|
|
else:
|
|
if len(a) == 0:
|
|
a.append( self._print(S.One) )
|
|
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
|
|
|
|
# A helper function for _print_Pow to print x**(1/n)
|
|
def _print_nth_root(self, base, root):
|
|
bpretty = self._print(base)
|
|
|
|
# In very simple cases, use a single-char root sign
|
|
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
|
|
and root == 2 and bpretty.height() == 1
|
|
and (bpretty.width() == 1
|
|
or (base.is_Integer and base.is_nonnegative))):
|
|
return prettyForm(*bpretty.left('\N{SQUARE ROOT}'))
|
|
|
|
# Construct root sign, start with the \/ shape
|
|
_zZ = xobj('/', 1)
|
|
rootsign = xobj('\\', 1) + _zZ
|
|
# Constructing the number to put on root
|
|
rpretty = self._print(root)
|
|
# roots look bad if they are not a single line
|
|
if rpretty.height() != 1:
|
|
return self._print(base)**self._print(1/root)
|
|
# If power is half, no number should appear on top of root sign
|
|
exp = '' if root == 2 else str(rpretty).ljust(2)
|
|
if len(exp) > 2:
|
|
rootsign = ' '*(len(exp) - 2) + rootsign
|
|
# Stack the exponent
|
|
rootsign = stringPict(exp + '\n' + rootsign)
|
|
rootsign.baseline = 0
|
|
# Diagonal: length is one less than height of base
|
|
linelength = bpretty.height() - 1
|
|
diagonal = stringPict('\n'.join(
|
|
' '*(linelength - i - 1) + _zZ + ' '*i
|
|
for i in range(linelength)
|
|
))
|
|
# Put baseline just below lowest line: next to exp
|
|
diagonal.baseline = linelength - 1
|
|
# Make the root symbol
|
|
rootsign = prettyForm(*rootsign.right(diagonal))
|
|
# Det the baseline to match contents to fix the height
|
|
# but if the height of bpretty is one, the rootsign must be one higher
|
|
rootsign.baseline = max(1, bpretty.baseline)
|
|
#build result
|
|
s = prettyForm(hobj('_', 2 + bpretty.width()))
|
|
s = prettyForm(*bpretty.above(s))
|
|
s = prettyForm(*s.left(rootsign))
|
|
return s
|
|
|
|
def _print_Pow(self, power):
|
|
from sympy.simplify.simplify import fraction
|
|
b, e = power.as_base_exp()
|
|
if power.is_commutative:
|
|
if e is S.NegativeOne:
|
|
return prettyForm("1")/self._print(b)
|
|
n, d = fraction(e)
|
|
if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \
|
|
and self._settings['root_notation']:
|
|
return self._print_nth_root(b, d)
|
|
if e.is_Rational and e < 0:
|
|
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
|
|
|
|
if b.is_Relational:
|
|
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
|
|
|
|
return self._print(b)**self._print(e)
|
|
|
|
def _print_UnevaluatedExpr(self, expr):
|
|
return self._print(expr.args[0])
|
|
|
|
def __print_numer_denom(self, p, q):
|
|
if q == 1:
|
|
if p < 0:
|
|
return prettyForm(str(p), binding=prettyForm.NEG)
|
|
else:
|
|
return prettyForm(str(p))
|
|
elif abs(p) >= 10 and abs(q) >= 10:
|
|
# If more than one digit in numer and denom, print larger fraction
|
|
if p < 0:
|
|
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
|
|
# Old printing method:
|
|
#pform = prettyForm(str(-p))/prettyForm(str(q))
|
|
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
|
|
else:
|
|
return prettyForm(str(p))/prettyForm(str(q))
|
|
else:
|
|
return None
|
|
|
|
def _print_Rational(self, expr):
|
|
result = self.__print_numer_denom(expr.p, expr.q)
|
|
|
|
if result is not None:
|
|
return result
|
|
else:
|
|
return self.emptyPrinter(expr)
|
|
|
|
def _print_Fraction(self, expr):
|
|
result = self.__print_numer_denom(expr.numerator, expr.denominator)
|
|
|
|
if result is not None:
|
|
return result
|
|
else:
|
|
return self.emptyPrinter(expr)
|
|
|
|
def _print_ProductSet(self, p):
|
|
if len(p.sets) >= 1 and not has_variety(p.sets):
|
|
return self._print(p.sets[0]) ** self._print(len(p.sets))
|
|
else:
|
|
prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
|
|
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
|
|
parenthesize=lambda set: set.is_Union or
|
|
set.is_Intersection or set.is_ProductSet)
|
|
|
|
def _print_FiniteSet(self, s):
|
|
items = sorted(s.args, key=default_sort_key)
|
|
return self._print_seq(items, '{', '}', ', ' )
|
|
|
|
def _print_Range(self, s):
|
|
|
|
if self._use_unicode:
|
|
dots = "\N{HORIZONTAL ELLIPSIS}"
|
|
else:
|
|
dots = '...'
|
|
|
|
if s.start.is_infinite and s.stop.is_infinite:
|
|
if s.step.is_positive:
|
|
printset = dots, -1, 0, 1, dots
|
|
else:
|
|
printset = dots, 1, 0, -1, dots
|
|
elif s.start.is_infinite:
|
|
printset = dots, s[-1] - s.step, s[-1]
|
|
elif s.stop.is_infinite:
|
|
it = iter(s)
|
|
printset = next(it), next(it), dots
|
|
elif len(s) > 4:
|
|
it = iter(s)
|
|
printset = next(it), next(it), dots, s[-1]
|
|
else:
|
|
printset = tuple(s)
|
|
|
|
return self._print_seq(printset, '{', '}', ', ' )
|
|
|
|
def _print_Interval(self, i):
|
|
if i.start == i.end:
|
|
return self._print_seq(i.args[:1], '{', '}')
|
|
|
|
else:
|
|
if i.left_open:
|
|
left = '('
|
|
else:
|
|
left = '['
|
|
|
|
if i.right_open:
|
|
right = ')'
|
|
else:
|
|
right = ']'
|
|
|
|
return self._print_seq(i.args[:2], left, right)
|
|
|
|
def _print_AccumulationBounds(self, i):
|
|
left = '<'
|
|
right = '>'
|
|
|
|
return self._print_seq(i.args[:2], left, right)
|
|
|
|
def _print_Intersection(self, u):
|
|
|
|
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
|
|
|
|
return self._print_seq(u.args, None, None, delimiter,
|
|
parenthesize=lambda set: set.is_ProductSet or
|
|
set.is_Union or set.is_Complement)
|
|
|
|
def _print_Union(self, u):
|
|
|
|
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
|
|
|
|
return self._print_seq(u.args, None, None, union_delimiter,
|
|
parenthesize=lambda set: set.is_ProductSet or
|
|
set.is_Intersection or set.is_Complement)
|
|
|
|
def _print_SymmetricDifference(self, u):
|
|
if not self._use_unicode:
|
|
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
|
|
|
|
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
|
|
|
|
return self._print_seq(u.args, None, None, sym_delimeter)
|
|
|
|
def _print_Complement(self, u):
|
|
|
|
delimiter = r' \ '
|
|
|
|
return self._print_seq(u.args, None, None, delimiter,
|
|
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
|
|
or set.is_Union)
|
|
|
|
def _print_ImageSet(self, ts):
|
|
if self._use_unicode:
|
|
inn = "\N{SMALL ELEMENT OF}"
|
|
else:
|
|
inn = 'in'
|
|
fun = ts.lamda
|
|
sets = ts.base_sets
|
|
signature = fun.signature
|
|
expr = self._print(fun.expr)
|
|
|
|
# TODO: the stuff to the left of the | and the stuff to the right of
|
|
# the | should have independent baselines, that way something like
|
|
# ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part
|
|
# centered on the right instead of aligned with the fraction bar on
|
|
# the left. The same also applies to ConditionSet and ComplexRegion
|
|
if len(signature) == 1:
|
|
S = self._print_seq((signature[0], inn, sets[0]),
|
|
delimiter=' ')
|
|
return self._hprint_vseparator(expr, S,
|
|
left='{', right='}',
|
|
ifascii_nougly=True, delimiter=' ')
|
|
else:
|
|
pargs = tuple(j for var, setv in zip(signature, sets) for j in
|
|
(var, ' ', inn, ' ', setv, ", "))
|
|
S = self._print_seq(pargs[:-1], delimiter='')
|
|
return self._hprint_vseparator(expr, S,
|
|
left='{', right='}',
|
|
ifascii_nougly=True, delimiter=' ')
|
|
|
|
def _print_ConditionSet(self, ts):
|
|
if self._use_unicode:
|
|
inn = "\N{SMALL ELEMENT OF}"
|
|
# using _and because and is a keyword and it is bad practice to
|
|
# overwrite them
|
|
_and = "\N{LOGICAL AND}"
|
|
else:
|
|
inn = 'in'
|
|
_and = 'and'
|
|
|
|
variables = self._print_seq(Tuple(ts.sym))
|
|
as_expr = getattr(ts.condition, 'as_expr', None)
|
|
if as_expr is not None:
|
|
cond = self._print(ts.condition.as_expr())
|
|
else:
|
|
cond = self._print(ts.condition)
|
|
if self._use_unicode:
|
|
cond = self._print(cond)
|
|
cond = prettyForm(*cond.parens())
|
|
|
|
if ts.base_set is S.UniversalSet:
|
|
return self._hprint_vseparator(variables, cond, left="{",
|
|
right="}", ifascii_nougly=True,
|
|
delimiter=' ')
|
|
|
|
base = self._print(ts.base_set)
|
|
C = self._print_seq((variables, inn, base, _and, cond),
|
|
delimiter=' ')
|
|
return self._hprint_vseparator(variables, C, left="{", right="}",
|
|
ifascii_nougly=True, delimiter=' ')
|
|
|
|
def _print_ComplexRegion(self, ts):
|
|
if self._use_unicode:
|
|
inn = "\N{SMALL ELEMENT OF}"
|
|
else:
|
|
inn = 'in'
|
|
variables = self._print_seq(ts.variables)
|
|
expr = self._print(ts.expr)
|
|
prodsets = self._print(ts.sets)
|
|
|
|
C = self._print_seq((variables, inn, prodsets),
|
|
delimiter=' ')
|
|
return self._hprint_vseparator(expr, C, left="{", right="}",
|
|
ifascii_nougly=True, delimiter=' ')
|
|
|
|
def _print_Contains(self, e):
|
|
var, set = e.args
|
|
if self._use_unicode:
|
|
el = " \N{ELEMENT OF} "
|
|
return prettyForm(*stringPict.next(self._print(var),
|
|
el, self._print(set)), binding=8)
|
|
else:
|
|
return prettyForm(sstr(e))
|
|
|
|
def _print_FourierSeries(self, s):
|
|
if s.an.formula is S.Zero and s.bn.formula is S.Zero:
|
|
return self._print(s.a0)
|
|
if self._use_unicode:
|
|
dots = "\N{HORIZONTAL ELLIPSIS}"
|
|
else:
|
|
dots = '...'
|
|
return self._print_Add(s.truncate()) + self._print(dots)
|
|
|
|
def _print_FormalPowerSeries(self, s):
|
|
return self._print_Add(s.infinite)
|
|
|
|
def _print_SetExpr(self, se):
|
|
pretty_set = prettyForm(*self._print(se.set).parens())
|
|
pretty_name = self._print(Symbol("SetExpr"))
|
|
return prettyForm(*pretty_name.right(pretty_set))
|
|
|
|
def _print_SeqFormula(self, s):
|
|
if self._use_unicode:
|
|
dots = "\N{HORIZONTAL ELLIPSIS}"
|
|
else:
|
|
dots = '...'
|
|
|
|
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
|
|
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
|
|
|
|
if s.start is S.NegativeInfinity:
|
|
stop = s.stop
|
|
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
|
|
s.coeff(stop - 1), s.coeff(stop))
|
|
elif s.stop is S.Infinity or s.length > 4:
|
|
printset = s[:4]
|
|
printset.append(dots)
|
|
printset = tuple(printset)
|
|
else:
|
|
printset = tuple(s)
|
|
return self._print_list(printset)
|
|
|
|
_print_SeqPer = _print_SeqFormula
|
|
_print_SeqAdd = _print_SeqFormula
|
|
_print_SeqMul = _print_SeqFormula
|
|
|
|
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
|
|
parenthesize=lambda x: False, ifascii_nougly=True):
|
|
try:
|
|
pforms = []
|
|
for item in seq:
|
|
pform = self._print(item)
|
|
if parenthesize(item):
|
|
pform = prettyForm(*pform.parens())
|
|
if pforms:
|
|
pforms.append(delimiter)
|
|
pforms.append(pform)
|
|
|
|
if not pforms:
|
|
s = stringPict('')
|
|
else:
|
|
s = prettyForm(*stringPict.next(*pforms))
|
|
|
|
# XXX: Under the tests from #15686 the above raises:
|
|
# AttributeError: 'Fake' object has no attribute 'baseline'
|
|
# This is caught below but that is not the right way to
|
|
# fix it.
|
|
|
|
except AttributeError:
|
|
s = None
|
|
for item in seq:
|
|
pform = self.doprint(item)
|
|
if parenthesize(item):
|
|
pform = prettyForm(*pform.parens())
|
|
if s is None:
|
|
# first element
|
|
s = pform
|
|
else :
|
|
s = prettyForm(*stringPict.next(s, delimiter))
|
|
s = prettyForm(*stringPict.next(s, pform))
|
|
|
|
if s is None:
|
|
s = stringPict('')
|
|
|
|
s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly))
|
|
return s
|
|
|
|
def join(self, delimiter, args):
|
|
pform = None
|
|
|
|
for arg in args:
|
|
if pform is None:
|
|
pform = arg
|
|
else:
|
|
pform = prettyForm(*pform.right(delimiter))
|
|
pform = prettyForm(*pform.right(arg))
|
|
|
|
if pform is None:
|
|
return prettyForm("")
|
|
else:
|
|
return pform
|
|
|
|
def _print_list(self, l):
|
|
return self._print_seq(l, '[', ']')
|
|
|
|
def _print_tuple(self, t):
|
|
if len(t) == 1:
|
|
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
|
|
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
|
|
else:
|
|
return self._print_seq(t, '(', ')')
|
|
|
|
def _print_Tuple(self, expr):
|
|
return self._print_tuple(expr)
|
|
|
|
def _print_dict(self, d):
|
|
keys = sorted(d.keys(), key=default_sort_key)
|
|
items = []
|
|
|
|
for k in keys:
|
|
K = self._print(k)
|
|
V = self._print(d[k])
|
|
s = prettyForm(*stringPict.next(K, ': ', V))
|
|
|
|
items.append(s)
|
|
|
|
return self._print_seq(items, '{', '}')
|
|
|
|
def _print_Dict(self, d):
|
|
return self._print_dict(d)
|
|
|
|
def _print_set(self, s):
|
|
if not s:
|
|
return prettyForm('set()')
|
|
items = sorted(s, key=default_sort_key)
|
|
pretty = self._print_seq(items)
|
|
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
|
|
return pretty
|
|
|
|
def _print_frozenset(self, s):
|
|
if not s:
|
|
return prettyForm('frozenset()')
|
|
items = sorted(s, key=default_sort_key)
|
|
pretty = self._print_seq(items)
|
|
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
|
|
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
|
|
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
|
|
return pretty
|
|
|
|
def _print_UniversalSet(self, s):
|
|
if self._use_unicode:
|
|
return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
|
|
else:
|
|
return prettyForm('UniversalSet')
|
|
|
|
def _print_PolyRing(self, ring):
|
|
return prettyForm(sstr(ring))
|
|
|
|
def _print_FracField(self, field):
|
|
return prettyForm(sstr(field))
|
|
|
|
def _print_FreeGroupElement(self, elm):
|
|
return prettyForm(str(elm))
|
|
|
|
def _print_PolyElement(self, poly):
|
|
return prettyForm(sstr(poly))
|
|
|
|
def _print_FracElement(self, frac):
|
|
return prettyForm(sstr(frac))
|
|
|
|
def _print_AlgebraicNumber(self, expr):
|
|
if expr.is_aliased:
|
|
return self._print(expr.as_poly().as_expr())
|
|
else:
|
|
return self._print(expr.as_expr())
|
|
|
|
def _print_ComplexRootOf(self, expr):
|
|
args = [self._print_Add(expr.expr, order='lex'), expr.index]
|
|
pform = prettyForm(*self._print_seq(args).parens())
|
|
pform = prettyForm(*pform.left('CRootOf'))
|
|
return pform
|
|
|
|
def _print_RootSum(self, expr):
|
|
args = [self._print_Add(expr.expr, order='lex')]
|
|
|
|
if expr.fun is not S.IdentityFunction:
|
|
args.append(self._print(expr.fun))
|
|
|
|
pform = prettyForm(*self._print_seq(args).parens())
|
|
pform = prettyForm(*pform.left('RootSum'))
|
|
|
|
return pform
|
|
|
|
def _print_FiniteField(self, expr):
|
|
if self._use_unicode:
|
|
form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d'
|
|
else:
|
|
form = 'GF(%d)'
|
|
|
|
return prettyForm(pretty_symbol(form % expr.mod))
|
|
|
|
def _print_IntegerRing(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}')
|
|
else:
|
|
return prettyForm('ZZ')
|
|
|
|
def _print_RationalField(self, expr):
|
|
if self._use_unicode:
|
|
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}')
|
|
else:
|
|
return prettyForm('QQ')
|
|
|
|
def _print_RealField(self, domain):
|
|
if self._use_unicode:
|
|
prefix = '\N{DOUBLE-STRUCK CAPITAL R}'
|
|
else:
|
|
prefix = 'RR'
|
|
|
|
if domain.has_default_precision:
|
|
return prettyForm(prefix)
|
|
else:
|
|
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
|
|
|
|
def _print_ComplexField(self, domain):
|
|
if self._use_unicode:
|
|
prefix = '\N{DOUBLE-STRUCK CAPITAL C}'
|
|
else:
|
|
prefix = 'CC'
|
|
|
|
if domain.has_default_precision:
|
|
return prettyForm(prefix)
|
|
else:
|
|
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
|
|
|
|
def _print_PolynomialRing(self, expr):
|
|
args = list(expr.symbols)
|
|
|
|
if not expr.order.is_default:
|
|
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
|
|
args.append(order)
|
|
|
|
pform = self._print_seq(args, '[', ']')
|
|
pform = prettyForm(*pform.left(self._print(expr.domain)))
|
|
|
|
return pform
|
|
|
|
def _print_FractionField(self, expr):
|
|
args = list(expr.symbols)
|
|
|
|
if not expr.order.is_default:
|
|
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
|
|
args.append(order)
|
|
|
|
pform = self._print_seq(args, '(', ')')
|
|
pform = prettyForm(*pform.left(self._print(expr.domain)))
|
|
|
|
return pform
|
|
|
|
def _print_PolynomialRingBase(self, expr):
|
|
g = expr.symbols
|
|
if str(expr.order) != str(expr.default_order):
|
|
g = g + ("order=" + str(expr.order),)
|
|
pform = self._print_seq(g, '[', ']')
|
|
pform = prettyForm(*pform.left(self._print(expr.domain)))
|
|
|
|
return pform
|
|
|
|
def _print_GroebnerBasis(self, basis):
|
|
exprs = [ self._print_Add(arg, order=basis.order)
|
|
for arg in basis.exprs ]
|
|
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
|
|
|
|
gens = [ self._print(gen) for gen in basis.gens ]
|
|
|
|
domain = prettyForm(
|
|
*prettyForm("domain=").right(self._print(basis.domain)))
|
|
order = prettyForm(
|
|
*prettyForm("order=").right(self._print(basis.order)))
|
|
|
|
pform = self.join(", ", [exprs] + gens + [domain, order])
|
|
|
|
pform = prettyForm(*pform.parens())
|
|
pform = prettyForm(*pform.left(basis.__class__.__name__))
|
|
|
|
return pform
|
|
|
|
def _print_Subs(self, e):
|
|
pform = self._print(e.expr)
|
|
pform = prettyForm(*pform.parens())
|
|
|
|
h = pform.height() if pform.height() > 1 else 2
|
|
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
|
|
pform = prettyForm(*pform.right(rvert))
|
|
|
|
b = pform.baseline
|
|
pform.baseline = pform.height() - 1
|
|
pform = prettyForm(*pform.right(self._print_seq([
|
|
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
|
|
delimiter='') for v in zip(e.variables, e.point) ])))
|
|
|
|
pform.baseline = b
|
|
return pform
|
|
|
|
def _print_number_function(self, e, name):
|
|
# Print name_arg[0] for one argument or name_arg[0](arg[1])
|
|
# for more than one argument
|
|
pform = prettyForm(name)
|
|
arg = self._print(e.args[0])
|
|
pform_arg = prettyForm(" "*arg.width())
|
|
pform_arg = prettyForm(*pform_arg.below(arg))
|
|
pform = prettyForm(*pform.right(pform_arg))
|
|
if len(e.args) == 1:
|
|
return pform
|
|
m, x = e.args
|
|
# TODO: copy-pasted from _print_Function: can we do better?
|
|
prettyFunc = pform
|
|
prettyArgs = prettyForm(*self._print_seq([x]).parens())
|
|
pform = prettyForm(
|
|
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
|
|
pform.prettyFunc = prettyFunc
|
|
pform.prettyArgs = prettyArgs
|
|
return pform
|
|
|
|
def _print_euler(self, e):
|
|
return self._print_number_function(e, "E")
|
|
|
|
def _print_catalan(self, e):
|
|
return self._print_number_function(e, "C")
|
|
|
|
def _print_bernoulli(self, e):
|
|
return self._print_number_function(e, "B")
|
|
|
|
_print_bell = _print_bernoulli
|
|
|
|
def _print_lucas(self, e):
|
|
return self._print_number_function(e, "L")
|
|
|
|
def _print_fibonacci(self, e):
|
|
return self._print_number_function(e, "F")
|
|
|
|
def _print_tribonacci(self, e):
|
|
return self._print_number_function(e, "T")
|
|
|
|
def _print_stieltjes(self, e):
|
|
if self._use_unicode:
|
|
return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}')
|
|
else:
|
|
return self._print_number_function(e, "stieltjes")
|
|
|
|
def _print_KroneckerDelta(self, e):
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.right(prettyForm(',')))
|
|
pform = prettyForm(*pform.right(self._print(e.args[1])))
|
|
if self._use_unicode:
|
|
a = stringPict(pretty_symbol('delta'))
|
|
else:
|
|
a = stringPict('d')
|
|
b = pform
|
|
top = stringPict(*b.left(' '*a.width()))
|
|
bot = stringPict(*a.right(' '*b.width()))
|
|
return prettyForm(binding=prettyForm.POW, *bot.below(top))
|
|
|
|
def _print_RandomDomain(self, d):
|
|
if hasattr(d, 'as_boolean'):
|
|
pform = self._print('Domain: ')
|
|
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
|
|
return pform
|
|
elif hasattr(d, 'set'):
|
|
pform = self._print('Domain: ')
|
|
pform = prettyForm(*pform.right(self._print(d.symbols)))
|
|
pform = prettyForm(*pform.right(self._print(' in ')))
|
|
pform = prettyForm(*pform.right(self._print(d.set)))
|
|
return pform
|
|
elif hasattr(d, 'symbols'):
|
|
pform = self._print('Domain on ')
|
|
pform = prettyForm(*pform.right(self._print(d.symbols)))
|
|
return pform
|
|
else:
|
|
return self._print(None)
|
|
|
|
def _print_DMP(self, p):
|
|
try:
|
|
if p.ring is not None:
|
|
# TODO incorporate order
|
|
return self._print(p.ring.to_sympy(p))
|
|
except SympifyError:
|
|
pass
|
|
return self._print(repr(p))
|
|
|
|
def _print_DMF(self, p):
|
|
return self._print_DMP(p)
|
|
|
|
def _print_Object(self, object):
|
|
return self._print(pretty_symbol(object.name))
|
|
|
|
def _print_Morphism(self, morphism):
|
|
arrow = xsym("-->")
|
|
|
|
domain = self._print(morphism.domain)
|
|
codomain = self._print(morphism.codomain)
|
|
tail = domain.right(arrow, codomain)[0]
|
|
|
|
return prettyForm(tail)
|
|
|
|
def _print_NamedMorphism(self, morphism):
|
|
pretty_name = self._print(pretty_symbol(morphism.name))
|
|
pretty_morphism = self._print_Morphism(morphism)
|
|
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
|
|
|
|
def _print_IdentityMorphism(self, morphism):
|
|
from sympy.categories import NamedMorphism
|
|
return self._print_NamedMorphism(
|
|
NamedMorphism(morphism.domain, morphism.codomain, "id"))
|
|
|
|
def _print_CompositeMorphism(self, morphism):
|
|
|
|
circle = xsym(".")
|
|
|
|
# All components of the morphism have names and it is thus
|
|
# possible to build the name of the composite.
|
|
component_names_list = [pretty_symbol(component.name) for
|
|
component in morphism.components]
|
|
component_names_list.reverse()
|
|
component_names = circle.join(component_names_list) + ":"
|
|
|
|
pretty_name = self._print(component_names)
|
|
pretty_morphism = self._print_Morphism(morphism)
|
|
return prettyForm(pretty_name.right(pretty_morphism)[0])
|
|
|
|
def _print_Category(self, category):
|
|
return self._print(pretty_symbol(category.name))
|
|
|
|
def _print_Diagram(self, diagram):
|
|
if not diagram.premises:
|
|
# This is an empty diagram.
|
|
return self._print(S.EmptySet)
|
|
|
|
pretty_result = self._print(diagram.premises)
|
|
if diagram.conclusions:
|
|
results_arrow = " %s " % xsym("==>")
|
|
|
|
pretty_conclusions = self._print(diagram.conclusions)[0]
|
|
pretty_result = pretty_result.right(
|
|
results_arrow, pretty_conclusions)
|
|
|
|
return prettyForm(pretty_result[0])
|
|
|
|
def _print_DiagramGrid(self, grid):
|
|
from sympy.matrices import Matrix
|
|
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
|
|
for j in range(grid.width)]
|
|
for i in range(grid.height)])
|
|
return self._print_matrix_contents(matrix)
|
|
|
|
def _print_FreeModuleElement(self, m):
|
|
# Print as row vector for convenience, for now.
|
|
return self._print_seq(m, '[', ']')
|
|
|
|
def _print_SubModule(self, M):
|
|
return self._print_seq(M.gens, '<', '>')
|
|
|
|
def _print_FreeModule(self, M):
|
|
return self._print(M.ring)**self._print(M.rank)
|
|
|
|
def _print_ModuleImplementedIdeal(self, M):
|
|
return self._print_seq([x for [x] in M._module.gens], '<', '>')
|
|
|
|
def _print_QuotientRing(self, R):
|
|
return self._print(R.ring) / self._print(R.base_ideal)
|
|
|
|
def _print_QuotientRingElement(self, R):
|
|
return self._print(R.data) + self._print(R.ring.base_ideal)
|
|
|
|
def _print_QuotientModuleElement(self, m):
|
|
return self._print(m.data) + self._print(m.module.killed_module)
|
|
|
|
def _print_QuotientModule(self, M):
|
|
return self._print(M.base) / self._print(M.killed_module)
|
|
|
|
def _print_MatrixHomomorphism(self, h):
|
|
matrix = self._print(h._sympy_matrix())
|
|
matrix.baseline = matrix.height() // 2
|
|
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
|
|
' %s> ' % hobj('-', 2), self._print(h.codomain)))
|
|
return pform
|
|
|
|
def _print_Manifold(self, manifold):
|
|
return self._print(manifold.name)
|
|
|
|
def _print_Patch(self, patch):
|
|
return self._print(patch.name)
|
|
|
|
def _print_CoordSystem(self, coords):
|
|
return self._print(coords.name)
|
|
|
|
def _print_BaseScalarField(self, field):
|
|
string = field._coord_sys.symbols[field._index].name
|
|
return self._print(pretty_symbol(string))
|
|
|
|
def _print_BaseVectorField(self, field):
|
|
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name
|
|
return self._print(pretty_symbol(s))
|
|
|
|
def _print_Differential(self, diff):
|
|
if self._use_unicode:
|
|
d = '\N{DOUBLE-STRUCK ITALIC SMALL D}'
|
|
else:
|
|
d = 'd'
|
|
field = diff._form_field
|
|
if hasattr(field, '_coord_sys'):
|
|
string = field._coord_sys.symbols[field._index].name
|
|
return self._print(d + ' ' + pretty_symbol(string))
|
|
else:
|
|
pform = self._print(field)
|
|
pform = prettyForm(*pform.parens())
|
|
return prettyForm(*pform.left(d))
|
|
|
|
def _print_Tr(self, p):
|
|
#TODO: Handle indices
|
|
pform = self._print(p.args[0])
|
|
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
|
|
pform = prettyForm(*pform.right(')'))
|
|
return pform
|
|
|
|
def _print_primenu(self, e):
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens())
|
|
if self._use_unicode:
|
|
pform = prettyForm(*pform.left(greek_unicode['nu']))
|
|
else:
|
|
pform = prettyForm(*pform.left('nu'))
|
|
return pform
|
|
|
|
def _print_primeomega(self, e):
|
|
pform = self._print(e.args[0])
|
|
pform = prettyForm(*pform.parens())
|
|
if self._use_unicode:
|
|
pform = prettyForm(*pform.left(greek_unicode['Omega']))
|
|
else:
|
|
pform = prettyForm(*pform.left('Omega'))
|
|
return pform
|
|
|
|
def _print_Quantity(self, e):
|
|
if e.name.name == 'degree':
|
|
pform = self._print("\N{DEGREE SIGN}")
|
|
return pform
|
|
else:
|
|
return self.emptyPrinter(e)
|
|
|
|
def _print_AssignmentBase(self, e):
|
|
|
|
op = prettyForm(' ' + xsym(e.op) + ' ')
|
|
|
|
l = self._print(e.lhs)
|
|
r = self._print(e.rhs)
|
|
pform = prettyForm(*stringPict.next(l, op, r))
|
|
return pform
|
|
|
|
def _print_Str(self, s):
|
|
return self._print(s.name)
|
|
|
|
|
|
@print_function(PrettyPrinter)
|
|
def pretty(expr, **settings):
|
|
"""Returns a string containing the prettified form of expr.
|
|
|
|
For information on keyword arguments see pretty_print function.
|
|
|
|
"""
|
|
pp = PrettyPrinter(settings)
|
|
|
|
# XXX: this is an ugly hack, but at least it works
|
|
use_unicode = pp._settings['use_unicode']
|
|
uflag = pretty_use_unicode(use_unicode)
|
|
|
|
try:
|
|
return pp.doprint(expr)
|
|
finally:
|
|
pretty_use_unicode(uflag)
|
|
|
|
|
|
def pretty_print(expr, **kwargs):
|
|
"""Prints expr in pretty form.
|
|
|
|
pprint is just a shortcut for this function.
|
|
|
|
Parameters
|
|
==========
|
|
|
|
expr : expression
|
|
The expression to print.
|
|
|
|
wrap_line : bool, optional (default=True)
|
|
Line wrapping enabled/disabled.
|
|
|
|
num_columns : int or None, optional (default=None)
|
|
Number of columns before line breaking (default to None which reads
|
|
the terminal width), useful when using SymPy without terminal.
|
|
|
|
use_unicode : bool or None, optional (default=None)
|
|
Use unicode characters, such as the Greek letter pi instead of
|
|
the string pi.
|
|
|
|
full_prec : bool or string, optional (default="auto")
|
|
Use full precision.
|
|
|
|
order : bool or string, optional (default=None)
|
|
Set to 'none' for long expressions if slow; default is None.
|
|
|
|
use_unicode_sqrt_char : bool, optional (default=True)
|
|
Use compact single-character square root symbol (when unambiguous).
|
|
|
|
root_notation : bool, optional (default=True)
|
|
Set to 'False' for printing exponents of the form 1/n in fractional form.
|
|
By default exponent is printed in root form.
|
|
|
|
mat_symbol_style : string, optional (default="plain")
|
|
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
|
|
By default the standard face is used.
|
|
|
|
imaginary_unit : string, optional (default="i")
|
|
Letter to use for imaginary unit when use_unicode is True.
|
|
Can be "i" (default) or "j".
|
|
"""
|
|
print(pretty(expr, **kwargs))
|
|
|
|
pprint = pretty_print
|
|
|
|
|
|
def pager_print(expr, **settings):
|
|
"""Prints expr using the pager, in pretty form.
|
|
|
|
This invokes a pager command using pydoc. Lines are not wrapped
|
|
automatically. This routine is meant to be used with a pager that allows
|
|
sideways scrolling, like ``less -S``.
|
|
|
|
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
|
|
pass ``num_columns=None`` to auto-detect the width of the terminal.
|
|
|
|
"""
|
|
from pydoc import pager
|
|
from locale import getpreferredencoding
|
|
if 'num_columns' not in settings:
|
|
settings['num_columns'] = 500000 # disable line wrap
|
|
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|