Traktor/myenv/Lib/site-packages/sympy/series/order.py
2024-05-26 05:12:46 +02:00

518 lines
19 KiB
Python

from sympy.core import S, sympify, Expr, Dummy, Add, Mul
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.function import Function, PoleError, expand_power_base, expand_log
from sympy.core.sorting import default_sort_key
from sympy.functions.elementary.exponential import exp, log
from sympy.sets.sets import Complement
from sympy.utilities.iterables import uniq, is_sequence
class Order(Expr):
r""" Represents the limiting behavior of some function.
Explanation
===========
The order of a function characterizes the function based on the limiting
behavior of the function as it goes to some limit. Only taking the limit
point to be a number is currently supported. This is expressed in
big O notation [1]_.
The formal definition for the order of a function `g(x)` about a point `a`
is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if there
exists a `\delta > 0` and an `M > 0` such that `|g(x)| \leq M|f(x)|` for
`|x-a| < \delta`. This is equivalent to `\limsup_{x \rightarrow a}
|g(x)/f(x)| < \infty`.
Let's illustrate it on the following example by taking the expansion of
`\sin(x)` about 0:
.. math ::
\sin(x) = x - x^3/3! + O(x^5)
where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition
of `O`, there is a `\delta > 0` and an `M` such that:
.. math ::
|x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta
or by the alternate definition:
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty
which surely is true, because
.. math ::
\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5!
As it is usually used, the order of a function can be intuitively thought
of representing all terms of powers greater than the one specified. For
example, `O(x^3)` corresponds to any terms proportional to `x^3,
x^4,\ldots` and any higher power. For a polynomial, this leaves terms
proportional to `x^2`, `x` and constants.
Examples
========
>>> from sympy import O, oo, cos, pi
>>> from sympy.abc import x, y
>>> O(x + x**2)
O(x)
>>> O(x + x**2, (x, 0))
O(x)
>>> O(x + x**2, (x, oo))
O(x**2, (x, oo))
>>> O(1 + x*y)
O(1, x, y)
>>> O(1 + x*y, (x, 0), (y, 0))
O(1, x, y)
>>> O(1 + x*y, (x, oo), (y, oo))
O(x*y, (x, oo), (y, oo))
>>> O(1) in O(1, x)
True
>>> O(1, x) in O(1)
False
>>> O(x) in O(1, x)
True
>>> O(x**2) in O(x)
True
>>> O(x)*x
O(x**2)
>>> O(x) - O(x)
O(x)
>>> O(cos(x))
O(1)
>>> O(cos(x), (x, pi/2))
O(x - pi/2, (x, pi/2))
References
==========
.. [1] `Big O notation <https://en.wikipedia.org/wiki/Big_O_notation>`_
Notes
=====
In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading
term. ``O(f(x), x)`` is automatically transformed to
``O(f(x).as_leading_term(x),x)``.
``O(expr*f(x), x)`` is ``O(f(x), x)``
``O(expr, x)`` is ``O(1)``
``O(0, x)`` is 0.
Multivariate O is also supported:
``O(f(x, y), x, y)`` is transformed to
``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)``
In the multivariate case, it is assumed the limits w.r.t. the various
symbols commute.
If no symbols are passed then all symbols in the expression are used
and the limit point is assumed to be zero.
"""
is_Order = True
__slots__ = ()
@cacheit
def __new__(cls, expr, *args, **kwargs):
expr = sympify(expr)
if not args:
if expr.is_Order:
variables = expr.variables
point = expr.point
else:
variables = list(expr.free_symbols)
point = [S.Zero]*len(variables)
else:
args = list(args if is_sequence(args) else [args])
variables, point = [], []
if is_sequence(args[0]):
for a in args:
v, p = list(map(sympify, a))
variables.append(v)
point.append(p)
else:
variables = list(map(sympify, args))
point = [S.Zero]*len(variables)
if not all(v.is_symbol for v in variables):
raise TypeError('Variables are not symbols, got %s' % variables)
if len(list(uniq(variables))) != len(variables):
raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)
if expr.is_Order:
expr_vp = dict(expr.args[1:])
new_vp = dict(expr_vp)
vp = dict(zip(variables, point))
for v, p in vp.items():
if v in new_vp.keys():
if p != new_vp[v]:
raise NotImplementedError(
"Mixing Order at different points is not supported.")
else:
new_vp[v] = p
if set(expr_vp.keys()) == set(new_vp.keys()):
return expr
else:
variables = list(new_vp.keys())
point = [new_vp[v] for v in variables]
if expr is S.NaN:
return S.NaN
if any(x in p.free_symbols for x in variables for p in point):
raise ValueError('Got %s as a point.' % point)
if variables:
if any(p != point[0] for p in point):
raise NotImplementedError(
"Multivariable orders at different points are not supported.")
if point[0] in (S.Infinity, S.Infinity*S.ImaginaryUnit):
s = {k: 1/Dummy() for k in variables}
rs = {1/v: 1/k for k, v in s.items()}
ps = [S.Zero for p in point]
elif point[0] in (S.NegativeInfinity, S.NegativeInfinity*S.ImaginaryUnit):
s = {k: -1/Dummy() for k in variables}
rs = {-1/v: -1/k for k, v in s.items()}
ps = [S.Zero for p in point]
elif point[0] is not S.Zero:
s = {k: Dummy() + point[0] for k in variables}
rs = {(v - point[0]).together(): k - point[0] for k, v in s.items()}
ps = [S.Zero for p in point]
else:
s = ()
rs = ()
ps = list(point)
expr = expr.subs(s)
if expr.is_Add:
expr = expr.factor()
if s:
args = tuple([r[0] for r in rs.items()])
else:
args = tuple(variables)
if len(variables) > 1:
# XXX: better way? We need this expand() to
# workaround e.g: expr = x*(x + y).
# (x*(x + y)).as_leading_term(x, y) currently returns
# x*y (wrong order term!). That's why we want to deal with
# expand()'ed expr (handled in "if expr.is_Add" branch below).
expr = expr.expand()
old_expr = None
while old_expr != expr:
old_expr = expr
if expr.is_Add:
lst = expr.extract_leading_order(args)
expr = Add(*[f.expr for (e, f) in lst])
elif expr:
try:
expr = expr.as_leading_term(*args)
except PoleError:
if isinstance(expr, Function) or\
all(isinstance(arg, Function) for arg in expr.args):
# It is not possible to simplify an expression
# containing only functions (which raise error on
# call to leading term) further
pass
else:
orders = []
pts = tuple(zip(args, ps))
for arg in expr.args:
try:
lt = arg.as_leading_term(*args)
except PoleError:
lt = arg
if lt not in args:
order = Order(lt)
else:
order = Order(lt, *pts)
orders.append(order)
if expr.is_Add:
new_expr = Order(Add(*orders), *pts)
if new_expr.is_Add:
new_expr = Order(Add(*[a.expr for a in new_expr.args]), *pts)
expr = new_expr.expr
elif expr.is_Mul:
expr = Mul(*[a.expr for a in orders])
elif expr.is_Pow:
e = expr.exp
b = expr.base
expr = exp(e * log(b))
# It would probably be better to handle this somewhere
# else. This is needed for a testcase in which there is a
# symbol with the assumptions zero=True.
if expr.is_zero:
expr = S.Zero
else:
expr = expr.as_independent(*args, as_Add=False)[1]
expr = expand_power_base(expr)
expr = expand_log(expr)
if len(args) == 1:
# The definition of O(f(x)) symbol explicitly stated that
# the argument of f(x) is irrelevant. That's why we can
# combine some power exponents (only "on top" of the
# expression tree for f(x)), e.g.:
# x**p * (-x)**q -> x**(p+q) for real p, q.
x = args[0]
margs = list(Mul.make_args(
expr.as_independent(x, as_Add=False)[1]))
for i, t in enumerate(margs):
if t.is_Pow:
b, q = t.args
if b in (x, -x) and q.is_real and not q.has(x):
margs[i] = x**q
elif b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
elif b.is_Mul and b.args[0] is S.NegativeOne:
b = -b
if b.is_Pow and not b.exp.has(x):
b, r = b.args
if b in (x, -x) and r.is_real:
margs[i] = x**(r*q)
expr = Mul(*margs)
expr = expr.subs(rs)
if expr.is_Order:
expr = expr.expr
if not expr.has(*variables) and not expr.is_zero:
expr = S.One
# create Order instance:
vp = dict(zip(variables, point))
variables.sort(key=default_sort_key)
point = [vp[v] for v in variables]
args = (expr,) + Tuple(*zip(variables, point))
obj = Expr.__new__(cls, *args)
return obj
def _eval_nseries(self, x, n, logx, cdir=0):
return self
@property
def expr(self):
return self.args[0]
@property
def variables(self):
if self.args[1:]:
return tuple(x[0] for x in self.args[1:])
else:
return ()
@property
def point(self):
if self.args[1:]:
return tuple(x[1] for x in self.args[1:])
else:
return ()
@property
def free_symbols(self):
return self.expr.free_symbols | set(self.variables)
def _eval_power(b, e):
if e.is_Number and e.is_nonnegative:
return b.func(b.expr ** e, *b.args[1:])
if e == O(1):
return b
return
def as_expr_variables(self, order_symbols):
if order_symbols is None:
order_symbols = self.args[1:]
else:
if (not all(o[1] == order_symbols[0][1] for o in order_symbols) and
not all(p == self.point[0] for p in self.point)): # pragma: no cover
raise NotImplementedError('Order at points other than 0 '
'or oo not supported, got %s as a point.' % self.point)
if order_symbols and order_symbols[0][1] != self.point[0]:
raise NotImplementedError(
"Multiplying Order at different points is not supported.")
order_symbols = dict(order_symbols)
for s, p in dict(self.args[1:]).items():
if s not in order_symbols.keys():
order_symbols[s] = p
order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0]))
return self.expr, tuple(order_symbols)
def removeO(self):
return S.Zero
def getO(self):
return self
@cacheit
def contains(self, expr):
r"""
Return True if expr belongs to Order(self.expr, \*self.variables).
Return False if self belongs to expr.
Return None if the inclusion relation cannot be determined
(e.g. when self and expr have different symbols).
"""
expr = sympify(expr)
if expr.is_zero:
return True
if expr is S.NaN:
return False
point = self.point[0] if self.point else S.Zero
if expr.is_Order:
if (any(p != point for p in expr.point) or
any(p != point for p in self.point)):
return None
if expr.expr == self.expr:
# O(1) + O(1), O(1) + O(1, x), etc.
return all(x in self.args[1:] for x in expr.args[1:])
if expr.expr.is_Add:
return all(self.contains(x) for x in expr.expr.args)
if self.expr.is_Add and point.is_zero:
return any(self.func(x, *self.args[1:]).contains(expr)
for x in self.expr.args)
if self.variables and expr.variables:
common_symbols = tuple(
[s for s in self.variables if s in expr.variables])
elif self.variables:
common_symbols = self.variables
else:
common_symbols = expr.variables
if not common_symbols:
return None
if (self.expr.is_Pow and len(self.variables) == 1
and self.variables == expr.variables):
symbol = self.variables[0]
other = expr.expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
from sympy.simplify.powsimp import powsimp
r = None
ratio = self.expr/expr.expr
ratio = powsimp(ratio, deep=True, combine='exp')
for s in common_symbols:
from sympy.series.limits import Limit
l = Limit(ratio, s, point).doit(heuristics=False)
if not isinstance(l, Limit):
l = l != 0
else:
l = None
if r is None:
r = l
else:
if r != l:
return
return r
if self.expr.is_Pow and len(self.variables) == 1:
symbol = self.variables[0]
other = expr.as_independent(symbol, as_Add=False)[1]
if (other.is_Pow and other.base == symbol and
self.expr.base == symbol):
if point.is_zero:
rv = (self.expr.exp - other.exp).is_nonpositive
if point.is_infinite:
rv = (self.expr.exp - other.exp).is_nonnegative
if rv is not None:
return rv
obj = self.func(expr, *self.args[1:])
return self.contains(obj)
def __contains__(self, other):
result = self.contains(other)
if result is None:
raise TypeError('contains did not evaluate to a bool')
return result
def _eval_subs(self, old, new):
if old in self.variables:
newexpr = self.expr.subs(old, new)
i = self.variables.index(old)
newvars = list(self.variables)
newpt = list(self.point)
if new.is_symbol:
newvars[i] = new
else:
syms = new.free_symbols
if len(syms) == 1 or old in syms:
if old in syms:
var = self.variables[i]
else:
var = syms.pop()
# First, try to substitute self.point in the "new"
# expr to see if this is a fixed point.
# E.g. O(y).subs(y, sin(x))
point = new.subs(var, self.point[i])
if point != self.point[i]:
from sympy.solvers.solveset import solveset
d = Dummy()
sol = solveset(old - new.subs(var, d), d)
if isinstance(sol, Complement):
e1 = sol.args[0]
e2 = sol.args[1]
sol = set(e1) - set(e2)
res = [dict(zip((d, ), sol))]
point = d.subs(res[0]).limit(old, self.point[i])
newvars[i] = var
newpt[i] = point
elif old not in syms:
del newvars[i], newpt[i]
if not syms and new == self.point[i]:
newvars.extend(syms)
newpt.extend([S.Zero]*len(syms))
else:
return
return Order(newexpr, *zip(newvars, newpt))
def _eval_conjugate(self):
expr = self.expr._eval_conjugate()
if expr is not None:
return self.func(expr, *self.args[1:])
def _eval_derivative(self, x):
return self.func(self.expr.diff(x), *self.args[1:]) or self
def _eval_transpose(self):
expr = self.expr._eval_transpose()
if expr is not None:
return self.func(expr, *self.args[1:])
def __neg__(self):
return self
O = Order