Traktor/myenv/Lib/site-packages/sympy/solvers/tests/test_polysys.py
2024-05-26 05:12:46 +02:00

179 lines
6.7 KiB
Python

"""Tests for solvers of systems of polynomial equations. """
from sympy.core.numbers import (I, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.polyerrors import UnsolvableFactorError
from sympy.polys.polyoptions import Options
from sympy.polys.polytools import Poly
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import flatten
from sympy.abc import x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
solve_triangulated,
solve_biquadratic, SolveFailed,
solve_generic)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises
def test_solve_poly_system():
assert solve_poly_system([x - 1], x) == [(S.One,)]
assert solve_poly_system([y - x, y - x - 1], x, y) is None
assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
[(Rational(3, 2), Integer(2), Integer(10))]
assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
[(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
solution = [(1, -1), (1, 1)]
assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
assert solve_poly_system([x**2 - y**2, x - 1]) == solution
assert solve_poly_system(
[x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
raises(NotImplementedError, lambda: solve_poly_system(
[z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
raises(PolynomialError, lambda: solve_poly_system([1/x], x))
raises(NotImplementedError, lambda: solve_poly_system(
[x-1,], (x, y)))
raises(NotImplementedError, lambda: solve_poly_system(
[y-1,], (x, y)))
# solve_poly_system should ideally construct solutions using
# CRootOf for the following four tests
assert solve_poly_system([x**5 - x + 1], [x], strict=False) == []
raises(UnsolvableFactorError, lambda: solve_poly_system(
[x**5 - x + 1], [x], strict=True))
assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y],
strict=False) == [(1, -1), (1, 1)]
raises(UnsolvableFactorError,
lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1],
[x, y], strict=True))
def test_solve_generic():
NewOption = Options((x, y), {'domain': 'ZZ'})
assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \
[(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
(sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2),
(-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2),
(sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)]
# solve_generic should ideally construct solutions using
# CRootOf for the following two tests
assert solve_generic(
[2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \
[(Rational(1, 2), 1)]
raises(UnsolvableFactorError, lambda: solve_generic(
[2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True))
def test_solve_biquadratic():
x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
f_1 = (x - 1)**2 + (y - 1)**2 - r**2
f_2 = (x - 2)**2 + (y - 2)**2 - r**2
s = sqrt(2*r**2 - 1)
a = (3 - s)/2
b = (3 + s)/2
assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
f_1 = (x - 1)**2 + (y - 2)**2 - r**2
f_2 = (x - 1)**2 + (y - 1)**2 - r**2
assert solve_poly_system([f_1, f_2], x, y) == \
[(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
(1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
query = lambda expr: expr.is_Pow and expr.exp is S.Half
f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
f_2 = (x - x1)**2 + (y - 1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(r.count(query) == 1 for r in flatten(result))
f_1 = (x - x0)**2 + (y - y0)**2 - r**2
f_2 = (x - x1)**2 + (y - y1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(len(r.find(query)) == 1 for r in flatten(result))
s1 = (x*y - y, x**2 - x)
assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
s2 = (x*y - x, y**2 - y)
assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
gens = (x, y)
for seq in (s1, s2):
(f, g), opt = parallel_poly_from_expr(seq, *gens)
raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
seq = (x**2 + y**2 - 2, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == [
(-1, -1), (-1, 1), (1, -1), (1, 1)]
ans = [(0, -1), (0, 1)]
seq = (x**2 + y**2 - 1, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
def test_solve_triangulated():
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
dom = QQ.algebraic_field(sqrt(2))
assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
def test_solve_issue_3686():
roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
# TODO: does this really have to be so complicated?!
assert len(roots) == 2
assert roots[0][0] == 0
assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
assert roots[1][0] == 0
assert roots[1][1].epsilon_eq(500.474999374969, 1e12)