107 lines
3.5 KiB
Python
107 lines
3.5 KiB
Python
"""ONNX exporter exceptions."""
|
|
from __future__ import annotations
|
|
|
|
import textwrap
|
|
from typing import Optional
|
|
|
|
from torch import _C
|
|
from torch.onnx import _constants
|
|
from torch.onnx._internal import diagnostics
|
|
|
|
__all__ = [
|
|
"OnnxExporterError",
|
|
"OnnxExporterWarning",
|
|
"CheckerError",
|
|
"SymbolicValueError",
|
|
"UnsupportedOperatorError",
|
|
]
|
|
|
|
|
|
class OnnxExporterWarning(UserWarning):
|
|
"""Base class for all warnings in the ONNX exporter."""
|
|
|
|
pass
|
|
|
|
|
|
class OnnxExporterError(RuntimeError):
|
|
"""Errors raised by the ONNX exporter."""
|
|
|
|
pass
|
|
|
|
|
|
class CheckerError(OnnxExporterError):
|
|
"""Raised when ONNX checker detects an invalid model."""
|
|
|
|
pass
|
|
|
|
|
|
class UnsupportedOperatorError(OnnxExporterError):
|
|
"""Raised when an operator is unsupported by the exporter."""
|
|
|
|
def __init__(self, name: str, version: int, supported_version: Optional[int]):
|
|
if supported_version is not None:
|
|
diagnostic_rule: diagnostics.infra.Rule = (
|
|
diagnostics.rules.operator_supported_in_newer_opset_version
|
|
)
|
|
msg = diagnostic_rule.format_message(name, version, supported_version)
|
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
|
|
else:
|
|
if name.startswith(("aten::", "prim::", "quantized::")):
|
|
diagnostic_rule = diagnostics.rules.missing_standard_symbolic_function
|
|
msg = diagnostic_rule.format_message(
|
|
name, version, _constants.PYTORCH_GITHUB_ISSUES_URL
|
|
)
|
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
|
|
else:
|
|
diagnostic_rule = diagnostics.rules.missing_custom_symbolic_function
|
|
msg = diagnostic_rule.format_message(name)
|
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg)
|
|
super().__init__(msg)
|
|
|
|
|
|
class SymbolicValueError(OnnxExporterError):
|
|
"""Errors around TorchScript values and nodes."""
|
|
|
|
def __init__(self, msg: str, value: _C.Value):
|
|
message = (
|
|
f"{msg} [Caused by the value '{value}' (type '{value.type()}') in the "
|
|
f"TorchScript graph. The containing node has kind '{value.node().kind()}'.] "
|
|
)
|
|
|
|
code_location = value.node().sourceRange()
|
|
if code_location:
|
|
message += f"\n (node defined in {code_location})"
|
|
|
|
try:
|
|
# Add its input and output to the message.
|
|
message += "\n\n"
|
|
message += textwrap.indent(
|
|
(
|
|
"Inputs:\n"
|
|
+ (
|
|
"\n".join(
|
|
f" #{i}: {input_} (type '{input_.type()}')"
|
|
for i, input_ in enumerate(value.node().inputs())
|
|
)
|
|
or " Empty"
|
|
)
|
|
+ "\n"
|
|
+ "Outputs:\n"
|
|
+ (
|
|
"\n".join(
|
|
f" #{i}: {output} (type '{output.type()}')"
|
|
for i, output in enumerate(value.node().outputs())
|
|
)
|
|
or " Empty"
|
|
)
|
|
),
|
|
" ",
|
|
)
|
|
except AttributeError:
|
|
message += (
|
|
" Failed to obtain its input and output for debugging. "
|
|
"Please refer to the TorchScript graph for debugging information."
|
|
)
|
|
|
|
super().__init__(message)
|