169 lines
5.7 KiB
Python
169 lines
5.7 KiB
Python
import os
|
|
from pathlib import Path
|
|
from typing import Tuple, Union
|
|
|
|
import torchaudio
|
|
from torch import Tensor
|
|
from torch.utils.data import Dataset
|
|
from torchaudio._internal import download_url_to_file
|
|
from torchaudio.datasets.utils import _extract_tar
|
|
|
|
URL = "train-clean-100"
|
|
FOLDER_IN_ARCHIVE = "LibriTTS"
|
|
_CHECKSUMS = {
|
|
"http://www.openslr.org/resources/60/dev-clean.tar.gz": "da0864e1bd26debed35da8a869dd5c04dfc27682921936de7cff9c8a254dbe1a", # noqa: E501
|
|
"http://www.openslr.org/resources/60/dev-other.tar.gz": "d413eda26f3a152ac7c9cf3658ef85504dfb1b625296e5fa83727f5186cca79c", # noqa: E501
|
|
"http://www.openslr.org/resources/60/test-clean.tar.gz": "234ea5b25859102a87024a4b9b86641f5b5aaaf1197335c95090cde04fe9a4f5", # noqa: E501
|
|
"http://www.openslr.org/resources/60/test-other.tar.gz": "33a5342094f3bba7ccc2e0500b9e72d558f72eb99328ac8debe1d9080402f10d", # noqa: E501
|
|
"http://www.openslr.org/resources/60/train-clean-100.tar.gz": "c5608bf1ef74bb621935382b8399c5cdd51cd3ee47cec51f00f885a64c6c7f6b", # noqa: E501
|
|
"http://www.openslr.org/resources/60/train-clean-360.tar.gz": "ce7cff44dcac46009d18379f37ef36551123a1dc4e5c8e4eb73ae57260de4886", # noqa: E501
|
|
"http://www.openslr.org/resources/60/train-other-500.tar.gz": "e35f7e34deeb2e2bdfe4403d88c8fdd5fbf64865cae41f027a185a6965f0a5df", # noqa: E501
|
|
}
|
|
|
|
|
|
def load_libritts_item(
|
|
fileid: str,
|
|
path: str,
|
|
ext_audio: str,
|
|
ext_original_txt: str,
|
|
ext_normalized_txt: str,
|
|
) -> Tuple[Tensor, int, str, str, int, int, str]:
|
|
speaker_id, chapter_id, segment_id, utterance_id = fileid.split("_")
|
|
utterance_id = fileid
|
|
|
|
normalized_text = utterance_id + ext_normalized_txt
|
|
normalized_text = os.path.join(path, speaker_id, chapter_id, normalized_text)
|
|
|
|
original_text = utterance_id + ext_original_txt
|
|
original_text = os.path.join(path, speaker_id, chapter_id, original_text)
|
|
|
|
file_audio = utterance_id + ext_audio
|
|
file_audio = os.path.join(path, speaker_id, chapter_id, file_audio)
|
|
|
|
# Load audio
|
|
waveform, sample_rate = torchaudio.load(file_audio)
|
|
|
|
# Load original text
|
|
with open(original_text) as ft:
|
|
original_text = ft.readline()
|
|
|
|
# Load normalized text
|
|
with open(normalized_text, "r") as ft:
|
|
normalized_text = ft.readline()
|
|
|
|
return (
|
|
waveform,
|
|
sample_rate,
|
|
original_text,
|
|
normalized_text,
|
|
int(speaker_id),
|
|
int(chapter_id),
|
|
utterance_id,
|
|
)
|
|
|
|
|
|
class LIBRITTS(Dataset):
|
|
"""*LibriTTS* :cite:`Zen2019LibriTTSAC` dataset.
|
|
|
|
Args:
|
|
root (str or Path): Path to the directory where the dataset is found or downloaded.
|
|
url (str, optional): The URL to download the dataset from,
|
|
or the type of the dataset to dowload.
|
|
Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``,
|
|
``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and
|
|
``"train-other-500"``. (default: ``"train-clean-100"``)
|
|
folder_in_archive (str, optional):
|
|
The top-level directory of the dataset. (default: ``"LibriTTS"``)
|
|
download (bool, optional):
|
|
Whether to download the dataset if it is not found at root path. (default: ``False``).
|
|
"""
|
|
|
|
_ext_original_txt = ".original.txt"
|
|
_ext_normalized_txt = ".normalized.txt"
|
|
_ext_audio = ".wav"
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[str, Path],
|
|
url: str = URL,
|
|
folder_in_archive: str = FOLDER_IN_ARCHIVE,
|
|
download: bool = False,
|
|
) -> None:
|
|
|
|
if url in [
|
|
"dev-clean",
|
|
"dev-other",
|
|
"test-clean",
|
|
"test-other",
|
|
"train-clean-100",
|
|
"train-clean-360",
|
|
"train-other-500",
|
|
]:
|
|
|
|
ext_archive = ".tar.gz"
|
|
base_url = "http://www.openslr.org/resources/60/"
|
|
|
|
url = os.path.join(base_url, url + ext_archive)
|
|
|
|
# Get string representation of 'root' in case Path object is passed
|
|
root = os.fspath(root)
|
|
|
|
basename = os.path.basename(url)
|
|
archive = os.path.join(root, basename)
|
|
|
|
basename = basename.split(".")[0]
|
|
folder_in_archive = os.path.join(folder_in_archive, basename)
|
|
|
|
self._path = os.path.join(root, folder_in_archive)
|
|
|
|
if download:
|
|
if not os.path.isdir(self._path):
|
|
if not os.path.isfile(archive):
|
|
checksum = _CHECKSUMS.get(url, None)
|
|
download_url_to_file(url, archive, hash_prefix=checksum)
|
|
_extract_tar(archive)
|
|
else:
|
|
if not os.path.exists(self._path):
|
|
raise RuntimeError(
|
|
f"The path {self._path} doesn't exist. "
|
|
"Please check the ``root`` path or set `download=True` to download it"
|
|
)
|
|
|
|
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio))
|
|
|
|
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int, int, str]:
|
|
"""Load the n-th sample from the dataset.
|
|
|
|
Args:
|
|
n (int): The index of the sample to be loaded
|
|
|
|
Returns:
|
|
Tuple of the following items;
|
|
|
|
Tensor:
|
|
Waveform
|
|
int:
|
|
Sample rate
|
|
str:
|
|
Original text
|
|
str:
|
|
Normalized text
|
|
int:
|
|
Speaker ID
|
|
int:
|
|
Chapter ID
|
|
str:
|
|
Utterance ID
|
|
"""
|
|
fileid = self._walker[n]
|
|
return load_libritts_item(
|
|
fileid,
|
|
self._path,
|
|
self._ext_audio,
|
|
self._ext_original_txt,
|
|
self._ext_normalized_txt,
|
|
)
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._walker)
|