Traktor/myenv/Lib/site-packages/torchaudio/datasets/snips.py
2024-05-26 05:12:46 +02:00

158 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
from pathlib import Path
from typing import List, Optional, Tuple, Union
import torch
from torch.utils.data import Dataset
from torchaudio.datasets.utils import _load_waveform
_SAMPLE_RATE = 16000
_SPEAKERS = [
"Aditi",
"Amy",
"Brian",
"Emma",
"Geraint",
"Ivy",
"Joanna",
"Joey",
"Justin",
"Kendra",
"Kimberly",
"Matthew",
"Nicole",
"Raveena",
"Russell",
"Salli",
]
def _load_labels(file: Path, subset: str):
"""Load transcirpt, iob, and intent labels for all utterances.
Args:
file (Path): The path to the label file.
subset (str): Subset of the dataset to use. Options: [``"train"``, ``"valid"``, ``"test"``].
Returns:
Dictionary of labels, where the key is the filename of the audio,
and the label is a Tuple of transcript, Insideoutsidebeginning (IOB) label, and intention label.
"""
labels = {}
with open(file, "r") as f:
for line in f:
line = line.strip().split(" ")
index = line[0]
trans, iob_intent = " ".join(line[1:]).split("\t")
trans = " ".join(trans.split(" ")[1:-1])
iob = " ".join(iob_intent.split(" ")[1:-1])
intent = iob_intent.split(" ")[-1]
if subset in index:
labels[index] = (trans, iob, intent)
return labels
class Snips(Dataset):
"""*Snips* :cite:`coucke2018snips` dataset.
Args:
root (str or Path): Root directory where the dataset's top level directory is found.
subset (str): Subset of the dataset to use. Options: [``"train"``, ``"valid"``, ``"test"``].
speakers (List[str] or None, optional): The speaker list to include in the dataset. If ``None``,
include all speakers in the subset. (Default: ``None``)
audio_format (str, optional): The extension of the audios. Options: [``"mp3"``, ``"wav"``].
(Default: ``"mp3"``)
"""
_trans_file = "all.iob.snips.txt"
def __init__(
self,
root: Union[str, Path],
subset: str,
speakers: Optional[List[str]] = None,
audio_format: str = "mp3",
) -> None:
if subset not in ["train", "valid", "test"]:
raise ValueError('`subset` must be one of ["train", "valid", "test"].')
if audio_format not in ["mp3", "wav"]:
raise ValueError('`audio_format` must be one of ["mp3", "wav].')
root = Path(root)
self._path = root / "SNIPS"
self.audio_path = self._path / subset
if speakers is None:
speakers = _SPEAKERS
if not os.path.isdir(self._path):
raise RuntimeError("Dataset not found.")
self.audio_paths = self.audio_path.glob(f"*.{audio_format}")
self.data = []
for audio_path in sorted(self.audio_paths):
audio_name = str(audio_path.name)
speaker = audio_name.split("-")[0]
if speaker in speakers:
self.data.append(audio_path)
transcript_path = self._path / self._trans_file
self.labels = _load_labels(transcript_path, subset)
def get_metadata(self, n: int) -> Tuple[str, int, str, str, str]:
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,
but otherwise returns the same fields as :py:func:`__getitem__`.
Args:
n (int): The index of the sample to be loaded.
Returns:
Tuple of the following items:
str:
Path to audio
int:
Sample rate
str:
File name
str:
Transcription of audio
str:
Insideoutsidebeginning (IOB) label of transcription
str:
Intention label of the audio.
"""
audio_path = self.data[n]
relpath = os.path.relpath(audio_path, self._path)
file_name = audio_path.with_suffix("").name
transcript, iob, intent = self.labels[file_name]
return relpath, _SAMPLE_RATE, file_name, transcript, iob, intent
def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str, str, str]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items:
Tensor:
Waveform
int:
Sample rate
str:
File name
str:
Transcription of audio
str:
Insideoutsidebeginning (IOB) label of transcription
str:
Intention label of the audio.
"""
metadata = self.get_metadata(n)
waveform = _load_waveform(self._path, metadata[0], metadata[1])
return (waveform,) + metadata[1:]
def __len__(self) -> int:
return len(self.data)