Traktor/myenv/Lib/site-packages/sklearn/utils/tests/test_sparsefuncs.py
2024-05-23 01:57:24 +02:00

999 lines
34 KiB
Python

import numpy as np
import pytest
import scipy.sparse as sp
from numpy.random import RandomState
from numpy.testing import assert_array_almost_equal, assert_array_equal
from scipy import linalg
from sklearn.datasets import make_classification
from sklearn.utils._testing import assert_allclose
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS, LIL_CONTAINERS
from sklearn.utils.sparsefuncs import (
_implicit_column_offset,
count_nonzero,
csc_median_axis_0,
incr_mean_variance_axis,
inplace_column_scale,
inplace_row_scale,
inplace_swap_column,
inplace_swap_row,
mean_variance_axis,
min_max_axis,
)
from sklearn.utils.sparsefuncs_fast import (
assign_rows_csr,
csr_row_norms,
inplace_csr_row_normalize_l1,
inplace_csr_row_normalize_l2,
)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_mean_variance_axis0(csc_container, csr_container, lil_container):
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_lil = lil_container(X)
X_lil[1, 0] = 0
X[1, 0] = 0
with pytest.raises(TypeError):
mean_variance_axis(X_lil, axis=0)
X_csr = csr_container(X_lil)
X_csc = csc_container(X_lil)
expected_dtypes = [
(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64),
]
for input_dtype, output_dtype in expected_dtypes:
X_test = X.astype(input_dtype)
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
assert X_means.dtype == output_dtype
assert X_vars.dtype == output_dtype
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS)
def test_mean_variance_axis0_precision(dtype, sparse_constructor):
# Check that there's no big loss of precision when the real variance is
# exactly 0. (#19766)
rng = np.random.RandomState(0)
X = np.full(fill_value=100.0, shape=(1000, 1), dtype=dtype)
# Add some missing records which should be ignored:
missing_indices = rng.choice(np.arange(X.shape[0]), 10, replace=False)
X[missing_indices, 0] = np.nan
X = sparse_constructor(X)
# Random positive weights:
sample_weight = rng.rand(X.shape[0]).astype(dtype)
_, var = mean_variance_axis(X, weights=sample_weight, axis=0)
assert var < np.finfo(dtype).eps
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_mean_variance_axis1(csc_container, csr_container, lil_container):
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_lil = lil_container(X)
X_lil[1, 0] = 0
X[1, 0] = 0
with pytest.raises(TypeError):
mean_variance_axis(X_lil, axis=1)
X_csr = csr_container(X_lil)
X_csc = csc_container(X_lil)
expected_dtypes = [
(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64),
]
for input_dtype, output_dtype in expected_dtypes:
X_test = X.astype(input_dtype)
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis=0)
assert X_means.dtype == output_dtype
assert X_vars.dtype == output_dtype
assert_array_almost_equal(X_means, np.mean(X_test, axis=0))
assert_array_almost_equal(X_vars, np.var(X_test, axis=0))
@pytest.mark.parametrize(
["Xw", "X", "weights"],
[
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1, 1]),
([[0, 0, 1], [0, 1, 1]], [[0, 0, 0, 1], [0, 1, 1, 1]], [1, 2, 1]),
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None),
(
[[0, np.nan, 2], [0, np.nan, np.nan]],
[[0, np.nan, 2], [0, np.nan, np.nan]],
[1.0, 1.0, 1.0],
),
(
[[0, 0], [1, np.nan], [2, 0], [0, 3], [np.nan, np.nan], [np.nan, 2]],
[
[0, 0, 0],
[1, 1, np.nan],
[2, 2, 0],
[0, 0, 3],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 2],
],
[2.0, 1.0],
),
(
[[1, 0, 1], [0, 3, 1]],
[[1, 0, 0, 0, 1], [0, 3, 3, 3, 1]],
np.array([1, 3, 1]),
),
],
)
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_incr_mean_variance_axis_weighted_axis1(
Xw, X, weights, sparse_constructor, dtype
):
axis = 1
Xw_sparse = sparse_constructor(Xw).astype(dtype)
X_sparse = sparse_constructor(X).astype(dtype)
last_mean = np.zeros(np.shape(Xw)[0], dtype=dtype)
last_var = np.zeros_like(last_mean, dtype=dtype)
last_n = np.zeros_like(last_mean, dtype=np.int64)
means0, vars0, n_incr0 = incr_mean_variance_axis(
X=X_sparse,
axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n,
weights=None,
)
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis(
X=Xw_sparse,
axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n,
weights=weights,
)
assert means_w0.dtype == dtype
assert vars_w0.dtype == dtype
assert n_incr_w0.dtype == dtype
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis)
assert_array_almost_equal(means0, means_w0)
assert_array_almost_equal(means0, means_simple)
assert_array_almost_equal(vars0, vars_w0)
assert_array_almost_equal(vars0, vars_simple)
assert_array_almost_equal(n_incr0, n_incr_w0)
# check second round for incremental
means1, vars1, n_incr1 = incr_mean_variance_axis(
X=X_sparse,
axis=axis,
last_mean=means0,
last_var=vars0,
last_n=n_incr0,
weights=None,
)
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis(
X=Xw_sparse,
axis=axis,
last_mean=means_w0,
last_var=vars_w0,
last_n=n_incr_w0,
weights=weights,
)
assert_array_almost_equal(means1, means_w1)
assert_array_almost_equal(vars1, vars_w1)
assert_array_almost_equal(n_incr1, n_incr_w1)
assert means_w1.dtype == dtype
assert vars_w1.dtype == dtype
assert n_incr_w1.dtype == dtype
@pytest.mark.parametrize(
["Xw", "X", "weights"],
[
([[0, 0, 1], [0, 2, 3]], [[0, 0, 1], [0, 2, 3]], [1, 1]),
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1], [0, 1, 1]], [1, 2]),
([[0, 0, 1], [0, 1, 1]], [[0, 0, 1], [0, 1, 1]], None),
(
[[0, np.nan, 2], [0, np.nan, np.nan]],
[[0, np.nan, 2], [0, np.nan, np.nan]],
[1.0, 1.0],
),
(
[[0, 0, 1, np.nan, 2, 0], [0, 3, np.nan, np.nan, np.nan, 2]],
[
[0, 0, 1, np.nan, 2, 0],
[0, 0, 1, np.nan, 2, 0],
[0, 3, np.nan, np.nan, np.nan, 2],
],
[2.0, 1.0],
),
(
[[1, 0, 1], [0, 0, 1]],
[[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]],
np.array([1, 3]),
),
],
)
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_incr_mean_variance_axis_weighted_axis0(
Xw, X, weights, sparse_constructor, dtype
):
axis = 0
Xw_sparse = sparse_constructor(Xw).astype(dtype)
X_sparse = sparse_constructor(X).astype(dtype)
last_mean = np.zeros(np.size(Xw, 1), dtype=dtype)
last_var = np.zeros_like(last_mean)
last_n = np.zeros_like(last_mean, dtype=np.int64)
means0, vars0, n_incr0 = incr_mean_variance_axis(
X=X_sparse,
axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n,
weights=None,
)
means_w0, vars_w0, n_incr_w0 = incr_mean_variance_axis(
X=Xw_sparse,
axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n,
weights=weights,
)
assert means_w0.dtype == dtype
assert vars_w0.dtype == dtype
assert n_incr_w0.dtype == dtype
means_simple, vars_simple = mean_variance_axis(X=X_sparse, axis=axis)
assert_array_almost_equal(means0, means_w0)
assert_array_almost_equal(means0, means_simple)
assert_array_almost_equal(vars0, vars_w0)
assert_array_almost_equal(vars0, vars_simple)
assert_array_almost_equal(n_incr0, n_incr_w0)
# check second round for incremental
means1, vars1, n_incr1 = incr_mean_variance_axis(
X=X_sparse,
axis=axis,
last_mean=means0,
last_var=vars0,
last_n=n_incr0,
weights=None,
)
means_w1, vars_w1, n_incr_w1 = incr_mean_variance_axis(
X=Xw_sparse,
axis=axis,
last_mean=means_w0,
last_var=vars_w0,
last_n=n_incr_w0,
weights=weights,
)
assert_array_almost_equal(means1, means_w1)
assert_array_almost_equal(vars1, vars_w1)
assert_array_almost_equal(n_incr1, n_incr_w1)
assert means_w1.dtype == dtype
assert vars_w1.dtype == dtype
assert n_incr_w1.dtype == dtype
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
@pytest.mark.parametrize("lil_container", LIL_CONTAINERS)
def test_incr_mean_variance_axis(csc_container, csr_container, lil_container):
for axis in [0, 1]:
rng = np.random.RandomState(0)
n_features = 50
n_samples = 10
if axis == 0:
data_chunks = [rng.randint(0, 2, size=n_features) for i in range(n_samples)]
else:
data_chunks = [rng.randint(0, 2, size=n_samples) for i in range(n_features)]
# default params for incr_mean_variance
last_mean = np.zeros(n_features) if axis == 0 else np.zeros(n_samples)
last_var = np.zeros_like(last_mean)
last_n = np.zeros_like(last_mean, dtype=np.int64)
# Test errors
X = np.array(data_chunks[0])
X = np.atleast_2d(X)
X = X.T if axis == 1 else X
X_lil = lil_container(X)
X_csr = csr_container(X_lil)
with pytest.raises(TypeError):
incr_mean_variance_axis(
X=axis, axis=last_mean, last_mean=last_var, last_var=last_n
)
with pytest.raises(TypeError):
incr_mean_variance_axis(
X_lil, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
# Test _incr_mean_and_var with a 1 row input
X_means, X_vars = mean_variance_axis(X_csr, axis)
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis(
X_csr, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
# X.shape[axis] picks # samples
assert_array_equal(X.shape[axis], n_incr)
X_csc = csc_container(X_lil)
X_means, X_vars = mean_variance_axis(X_csc, axis)
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
assert_array_equal(X.shape[axis], n_incr)
# Test _incremental_mean_and_var with whole data
X = np.vstack(data_chunks)
X = X.T if axis == 1 else X
X_lil = lil_container(X)
X_csr = csr_container(X_lil)
X_csc = csc_container(X_lil)
expected_dtypes = [
(np.float32, np.float32),
(np.float64, np.float64),
(np.int32, np.float64),
(np.int64, np.float64),
]
for input_dtype, output_dtype in expected_dtypes:
for X_sparse in (X_csr, X_csc):
X_sparse = X_sparse.astype(input_dtype)
last_mean = last_mean.astype(output_dtype)
last_var = last_var.astype(output_dtype)
X_means, X_vars = mean_variance_axis(X_sparse, axis)
X_means_incr, X_vars_incr, n_incr = incr_mean_variance_axis(
X_sparse,
axis=axis,
last_mean=last_mean,
last_var=last_var,
last_n=last_n,
)
assert X_means_incr.dtype == output_dtype
assert X_vars_incr.dtype == output_dtype
assert_array_almost_equal(X_means, X_means_incr)
assert_array_almost_equal(X_vars, X_vars_incr)
assert_array_equal(X.shape[axis], n_incr)
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS)
def test_incr_mean_variance_axis_dim_mismatch(sparse_constructor):
"""Check that we raise proper error when axis=1 and the dimension mismatch.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/pull/18655
"""
n_samples, n_features = 60, 4
rng = np.random.RandomState(42)
X = sparse_constructor(rng.rand(n_samples, n_features))
last_mean = np.zeros(n_features)
last_var = np.zeros_like(last_mean)
last_n = np.zeros(last_mean.shape, dtype=np.int64)
kwargs = dict(last_mean=last_mean, last_var=last_var, last_n=last_n)
mean0, var0, _ = incr_mean_variance_axis(X, axis=0, **kwargs)
assert_allclose(np.mean(X.toarray(), axis=0), mean0)
assert_allclose(np.var(X.toarray(), axis=0), var0)
# test ValueError if axis=1 and last_mean.size == n_features
with pytest.raises(ValueError):
incr_mean_variance_axis(X, axis=1, **kwargs)
# test inconsistent shapes of last_mean, last_var, last_n
kwargs = dict(last_mean=last_mean[:-1], last_var=last_var, last_n=last_n)
with pytest.raises(ValueError):
incr_mean_variance_axis(X, axis=0, **kwargs)
@pytest.mark.parametrize(
"X1, X2",
[
(
sp.random(5, 2, density=0.8, format="csr", random_state=0),
sp.random(13, 2, density=0.8, format="csr", random_state=0),
),
(
sp.random(5, 2, density=0.8, format="csr", random_state=0),
sp.hstack(
[
np.full((13, 1), fill_value=np.nan),
sp.random(13, 1, density=0.8, random_state=42),
],
format="csr",
),
),
],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_incr_mean_variance_axis_equivalence_mean_variance(X1, X2, csr_container):
# non-regression test for:
# https://github.com/scikit-learn/scikit-learn/issues/16448
# check that computing the incremental mean and variance is equivalent to
# computing the mean and variance on the stacked dataset.
X1 = csr_container(X1)
X2 = csr_container(X2)
axis = 0
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
last_n = np.zeros(X1.shape[1], dtype=np.int64)
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X2, axis=axis, last_mean=updated_mean, last_var=updated_var, last_n=updated_n
)
X = sp.vstack([X1, X2])
assert_allclose(updated_mean, np.nanmean(X.toarray(), axis=axis))
assert_allclose(updated_var, np.nanvar(X.toarray(), axis=axis))
assert_allclose(updated_n, np.count_nonzero(~np.isnan(X.toarray()), axis=0))
def test_incr_mean_variance_no_new_n():
# check the behaviour when we update the variance with an empty matrix
axis = 0
X1 = sp.random(5, 1, density=0.8, random_state=0).tocsr()
X2 = sp.random(0, 1, density=0.8, random_state=0).tocsr()
last_mean, last_var = np.zeros(X1.shape[1]), np.zeros(X1.shape[1])
last_n = np.zeros(X1.shape[1], dtype=np.int64)
last_mean, last_var, last_n = incr_mean_variance_axis(
X1, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
# update statistic with a column which should ignored
updated_mean, updated_var, updated_n = incr_mean_variance_axis(
X2, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
assert_allclose(updated_mean, last_mean)
assert_allclose(updated_var, last_var)
assert_allclose(updated_n, last_n)
def test_incr_mean_variance_n_float():
# check the behaviour when last_n is just a number
axis = 0
X = sp.random(5, 2, density=0.8, random_state=0).tocsr()
last_mean, last_var = np.zeros(X.shape[1]), np.zeros(X.shape[1])
last_n = 0
_, _, new_n = incr_mean_variance_axis(
X, axis=axis, last_mean=last_mean, last_var=last_var, last_n=last_n
)
assert_allclose(new_n, np.full(X.shape[1], X.shape[0]))
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("sparse_constructor", CSC_CONTAINERS + CSR_CONTAINERS)
def test_incr_mean_variance_axis_ignore_nan(axis, sparse_constructor):
old_means = np.array([535.0, 535.0, 535.0, 535.0])
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0])
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int64)
X = sparse_constructor(
np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]])
)
X_nan = sparse_constructor(
np.array(
[
[170, np.nan, 170, 170],
[np.nan, 170, 430, 430],
[430, 430, np.nan, 300],
[300, 300, 300, np.nan],
]
)
)
# we avoid creating specific data for axis 0 and 1: translating the data is
# enough.
if axis:
X = X.T
X_nan = X_nan.T
# take a copy of the old statistics since they are modified in place.
X_means, X_vars, X_sample_count = incr_mean_variance_axis(
X,
axis=axis,
last_mean=old_means.copy(),
last_var=old_variances.copy(),
last_n=old_sample_count.copy(),
)
X_nan_means, X_nan_vars, X_nan_sample_count = incr_mean_variance_axis(
X_nan,
axis=axis,
last_mean=old_means.copy(),
last_var=old_variances.copy(),
last_n=old_sample_count.copy(),
)
assert_allclose(X_nan_means, X_means)
assert_allclose(X_nan_vars, X_vars)
assert_allclose(X_nan_sample_count, X_sample_count)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_mean_variance_illegal_axis(csr_container):
X, _ = make_classification(5, 4, random_state=0)
# Sparsify the array a little bit
X[0, 0] = 0
X[2, 1] = 0
X[4, 3] = 0
X_csr = csr_container(X)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=-3)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=2)
with pytest.raises(ValueError):
mean_variance_axis(X_csr, axis=-1)
with pytest.raises(ValueError):
incr_mean_variance_axis(
X_csr, axis=-3, last_mean=None, last_var=None, last_n=None
)
with pytest.raises(ValueError):
incr_mean_variance_axis(
X_csr, axis=2, last_mean=None, last_var=None, last_n=None
)
with pytest.raises(ValueError):
incr_mean_variance_axis(
X_csr, axis=-1, last_mean=None, last_var=None, last_n=None
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_densify_rows(csr_container):
for dtype in (np.float32, np.float64):
X = csr_container(
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=dtype
)
X_rows = np.array([0, 2, 3], dtype=np.intp)
out = np.ones((6, X.shape[1]), dtype=dtype)
out_rows = np.array([1, 3, 4], dtype=np.intp)
expect = np.ones_like(out)
expect[out_rows] = X[X_rows, :].toarray()
assign_rows_csr(X, X_rows, out_rows, out)
assert_array_equal(out, expect)
def test_inplace_column_scale():
rng = np.random.RandomState(0)
X = sp.rand(100, 200, 0.05)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
scale = rng.rand(200)
XA *= scale
inplace_column_scale(Xc, scale)
inplace_column_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
X = X.astype(np.float32)
scale = scale.astype(np.float32)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
XA *= scale
inplace_column_scale(Xc, scale)
inplace_column_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
def test_inplace_row_scale():
rng = np.random.RandomState(0)
X = sp.rand(100, 200, 0.05)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
scale = rng.rand(100)
XA *= scale.reshape(-1, 1)
inplace_row_scale(Xc, scale)
inplace_row_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
X = X.astype(np.float32)
scale = scale.astype(np.float32)
Xr = X.tocsr()
Xc = X.tocsc()
XA = X.toarray()
XA *= scale.reshape(-1, 1)
inplace_row_scale(Xc, scale)
inplace_row_scale(Xr, scale)
assert_array_almost_equal(Xr.toarray(), Xc.toarray())
assert_array_almost_equal(XA, Xc.toarray())
assert_array_almost_equal(XA, Xr.toarray())
with pytest.raises(TypeError):
inplace_column_scale(X.tolil(), scale)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_inplace_swap_row(csc_container, csr_container):
X = np.array(
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
)
X_csr = csr_container(X)
X_csc = csc_container(X)
swap = linalg.get_blas_funcs(("swap",), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_row(X_csr.tolil())
X = np.array(
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32
)
X_csr = csr_container(X)
X_csc = csc_container(X)
swap = linalg.get_blas_funcs(("swap",), (X,))
swap = swap[0]
X[0], X[-1] = swap(X[0], X[-1])
inplace_swap_row(X_csr, 0, -1)
inplace_swap_row(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[2], X[3] = swap(X[2], X[3])
inplace_swap_row(X_csr, 2, 3)
inplace_swap_row(X_csc, 2, 3)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_row(X_csr.tolil())
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_inplace_swap_column(csc_container, csr_container):
X = np.array(
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
)
X_csr = csr_container(X)
X_csc = csc_container(X)
swap = linalg.get_blas_funcs(("swap",), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_column(X_csr.tolil())
X = np.array(
[[0, 3, 0], [2, 4, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float32
)
X_csr = csr_container(X)
X_csc = csc_container(X)
swap = linalg.get_blas_funcs(("swap",), (X,))
swap = swap[0]
X[:, 0], X[:, -1] = swap(X[:, 0], X[:, -1])
inplace_swap_column(X_csr, 0, -1)
inplace_swap_column(X_csc, 0, -1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
X[:, 0], X[:, 1] = swap(X[:, 0], X[:, 1])
inplace_swap_column(X_csr, 0, 1)
inplace_swap_column(X_csc, 0, 1)
assert_array_equal(X_csr.toarray(), X_csc.toarray())
assert_array_equal(X, X_csc.toarray())
assert_array_equal(X, X_csr.toarray())
with pytest.raises(TypeError):
inplace_swap_column(X_csr.tolil())
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("axis", [0, 1, None])
@pytest.mark.parametrize("sparse_format", CSC_CONTAINERS + CSR_CONTAINERS)
@pytest.mark.parametrize(
"missing_values, min_func, max_func, ignore_nan",
[(0, np.min, np.max, False), (np.nan, np.nanmin, np.nanmax, True)],
)
@pytest.mark.parametrize("large_indices", [True, False])
def test_min_max(
dtype,
axis,
sparse_format,
missing_values,
min_func,
max_func,
ignore_nan,
large_indices,
):
X = np.array(
[
[0, 3, 0],
[2, -1, missing_values],
[0, 0, 0],
[9, missing_values, 7],
[4, 0, 5],
],
dtype=dtype,
)
X_sparse = sparse_format(X)
if large_indices:
X_sparse.indices = X_sparse.indices.astype("int64")
X_sparse.indptr = X_sparse.indptr.astype("int64")
mins_sparse, maxs_sparse = min_max_axis(X_sparse, axis=axis, ignore_nan=ignore_nan)
assert_array_equal(mins_sparse, min_func(X, axis=axis))
assert_array_equal(maxs_sparse, max_func(X, axis=axis))
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_min_max_axis_errors(csc_container, csr_container):
X = np.array(
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
)
X_csr = csr_container(X)
X_csc = csc_container(X)
with pytest.raises(TypeError):
min_max_axis(X_csr.tolil(), axis=0)
with pytest.raises(ValueError):
min_max_axis(X_csr, axis=2)
with pytest.raises(ValueError):
min_max_axis(X_csc, axis=-3)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_count_nonzero(csc_container, csr_container):
X = np.array(
[[0, 3, 0], [2, -1, 0], [0, 0, 0], [9, 8, 7], [4, 0, 5]], dtype=np.float64
)
X_csr = csr_container(X)
X_csc = csc_container(X)
X_nonzero = X != 0
sample_weight = [0.5, 0.2, 0.3, 0.1, 0.1]
X_nonzero_weighted = X_nonzero * np.array(sample_weight)[:, None]
for axis in [0, 1, -1, -2, None]:
assert_array_almost_equal(
count_nonzero(X_csr, axis=axis), X_nonzero.sum(axis=axis)
)
assert_array_almost_equal(
count_nonzero(X_csr, axis=axis, sample_weight=sample_weight),
X_nonzero_weighted.sum(axis=axis),
)
with pytest.raises(TypeError):
count_nonzero(X_csc)
with pytest.raises(ValueError):
count_nonzero(X_csr, axis=2)
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype
assert (
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype
)
# Check dtypes with large sparse matrices too
# XXX: test fails on 32bit (Windows/Linux)
try:
X_csr.indices = X_csr.indices.astype(np.int64)
X_csr.indptr = X_csr.indptr.astype(np.int64)
assert count_nonzero(X_csr, axis=0).dtype == count_nonzero(X_csr, axis=1).dtype
assert (
count_nonzero(X_csr, axis=0, sample_weight=sample_weight).dtype
== count_nonzero(X_csr, axis=1, sample_weight=sample_weight).dtype
)
except TypeError as e:
assert "according to the rule 'safe'" in e.args[0] and np.intp().nbytes < 8, e
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csc_row_median(csc_container, csr_container):
# Test csc_row_median actually calculates the median.
# Test that it gives the same output when X is dense.
rng = np.random.RandomState(0)
X = rng.rand(100, 50)
dense_median = np.median(X, axis=0)
csc = csc_container(X)
sparse_median = csc_median_axis_0(csc)
assert_array_equal(sparse_median, dense_median)
# Test that it gives the same output when X is sparse
X = rng.rand(51, 100)
X[X < 0.7] = 0.0
ind = rng.randint(0, 50, 10)
X[ind] = -X[ind]
csc = csc_container(X)
dense_median = np.median(X, axis=0)
sparse_median = csc_median_axis_0(csc)
assert_array_equal(sparse_median, dense_median)
# Test for toy data.
X = [[0, -2], [-1, -1], [1, 0], [2, 1]]
csc = csc_container(X)
assert_array_equal(csc_median_axis_0(csc), np.array([0.5, -0.5]))
X = [[0, -2], [-1, -5], [1, -3]]
csc = csc_container(X)
assert_array_equal(csc_median_axis_0(csc), np.array([0.0, -3]))
# Test that it raises an Error for non-csc matrices.
with pytest.raises(TypeError):
csc_median_axis_0(csr_container(X))
@pytest.mark.parametrize(
"inplace_csr_row_normalize",
(inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2),
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_inplace_normalize(csr_container, inplace_csr_row_normalize):
if csr_container is sp.csr_matrix:
ones = np.ones((10, 1))
else:
ones = np.ones(10)
rs = RandomState(10)
for dtype in (np.float64, np.float32):
X = rs.randn(10, 5).astype(dtype)
X_csr = csr_container(X)
for index_dtype in [np.int32, np.int64]:
# csr_matrix will use int32 indices by default,
# up-casting those to int64 when necessary
if index_dtype is np.int64:
X_csr.indptr = X_csr.indptr.astype(index_dtype)
X_csr.indices = X_csr.indices.astype(index_dtype)
assert X_csr.indices.dtype == index_dtype
assert X_csr.indptr.dtype == index_dtype
inplace_csr_row_normalize(X_csr)
assert X_csr.dtype == dtype
if inplace_csr_row_normalize is inplace_csr_row_normalize_l2:
X_csr.data **= 2
assert_array_almost_equal(np.abs(X_csr).sum(axis=1), ones)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_csr_row_norms(dtype):
# checks that csr_row_norms returns the same output as
# scipy.sparse.linalg.norm, and that the dype is the same as X.dtype.
X = sp.random(100, 10, format="csr", dtype=dtype, random_state=42)
scipy_norms = sp.linalg.norm(X, axis=1) ** 2
norms = csr_row_norms(X)
assert norms.dtype == dtype
rtol = 1e-6 if dtype == np.float32 else 1e-7
assert_allclose(norms, scipy_norms, rtol=rtol)
@pytest.fixture(scope="module", params=CSR_CONTAINERS + CSC_CONTAINERS)
def centered_matrices(request):
"""Returns equivalent tuple[sp.linalg.LinearOperator, np.ndarray]."""
sparse_container = request.param
random_state = np.random.default_rng(42)
X_sparse = sparse_container(
sp.random(500, 100, density=0.1, format="csr", random_state=random_state)
)
X_dense = X_sparse.toarray()
mu = np.asarray(X_sparse.mean(axis=0)).ravel()
X_sparse_centered = _implicit_column_offset(X_sparse, mu)
X_dense_centered = X_dense - mu
return X_sparse_centered, X_dense_centered
def test_implicit_center_matmat(global_random_seed, centered_matrices):
X_sparse_centered, X_dense_centered = centered_matrices
rng = np.random.default_rng(global_random_seed)
Y = rng.standard_normal((X_dense_centered.shape[1], 50))
assert_allclose(X_dense_centered @ Y, X_sparse_centered.matmat(Y))
assert_allclose(X_dense_centered @ Y, X_sparse_centered @ Y)
def test_implicit_center_matvec(global_random_seed, centered_matrices):
X_sparse_centered, X_dense_centered = centered_matrices
rng = np.random.default_rng(global_random_seed)
y = rng.standard_normal(X_dense_centered.shape[1])
assert_allclose(X_dense_centered @ y, X_sparse_centered.matvec(y))
assert_allclose(X_dense_centered @ y, X_sparse_centered @ y)
def test_implicit_center_rmatmat(global_random_seed, centered_matrices):
X_sparse_centered, X_dense_centered = centered_matrices
rng = np.random.default_rng(global_random_seed)
Y = rng.standard_normal((X_dense_centered.shape[0], 50))
assert_allclose(X_dense_centered.T @ Y, X_sparse_centered.rmatmat(Y))
assert_allclose(X_dense_centered.T @ Y, X_sparse_centered.T @ Y)
def test_implit_center_rmatvec(global_random_seed, centered_matrices):
X_sparse_centered, X_dense_centered = centered_matrices
rng = np.random.default_rng(global_random_seed)
y = rng.standard_normal(X_dense_centered.shape[0])
assert_allclose(X_dense_centered.T @ y, X_sparse_centered.rmatvec(y))
assert_allclose(X_dense_centered.T @ y, X_sparse_centered.T @ y)