Traktor/myenv/Lib/site-packages/pandas/io/parquet.py
2024-05-26 05:12:46 +02:00

677 lines
23 KiB
Python

""" parquet compat """
from __future__ import annotations
import io
import json
import os
from typing import (
TYPE_CHECKING,
Any,
Literal,
)
import warnings
from warnings import catch_warnings
from pandas._config import using_pyarrow_string_dtype
from pandas._config.config import _get_option
from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend
import pandas as pd
from pandas import (
DataFrame,
get_option,
)
from pandas.core.shared_docs import _shared_docs
from pandas.io._util import arrow_string_types_mapper
from pandas.io.common import (
IOHandles,
get_handle,
is_fsspec_url,
is_url,
stringify_path,
)
if TYPE_CHECKING:
from pandas._typing import (
DtypeBackend,
FilePath,
ReadBuffer,
StorageOptions,
WriteBuffer,
)
def get_engine(engine: str) -> BaseImpl:
"""return our implementation"""
if engine == "auto":
engine = get_option("io.parquet.engine")
if engine == "auto":
# try engines in this order
engine_classes = [PyArrowImpl, FastParquetImpl]
error_msgs = ""
for engine_class in engine_classes:
try:
return engine_class()
except ImportError as err:
error_msgs += "\n - " + str(err)
raise ImportError(
"Unable to find a usable engine; "
"tried using: 'pyarrow', 'fastparquet'.\n"
"A suitable version of "
"pyarrow or fastparquet is required for parquet "
"support.\n"
"Trying to import the above resulted in these errors:"
f"{error_msgs}"
)
if engine == "pyarrow":
return PyArrowImpl()
elif engine == "fastparquet":
return FastParquetImpl()
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
def _get_path_or_handle(
path: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes],
fs: Any,
storage_options: StorageOptions | None = None,
mode: str = "rb",
is_dir: bool = False,
) -> tuple[
FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any
]:
"""File handling for PyArrow."""
path_or_handle = stringify_path(path)
if fs is not None:
pa_fs = import_optional_dependency("pyarrow.fs", errors="ignore")
fsspec = import_optional_dependency("fsspec", errors="ignore")
if pa_fs is not None and isinstance(fs, pa_fs.FileSystem):
if storage_options:
raise NotImplementedError(
"storage_options not supported with a pyarrow FileSystem."
)
elif fsspec is not None and isinstance(fs, fsspec.spec.AbstractFileSystem):
pass
else:
raise ValueError(
f"filesystem must be a pyarrow or fsspec FileSystem, "
f"not a {type(fs).__name__}"
)
if is_fsspec_url(path_or_handle) and fs is None:
if storage_options is None:
pa = import_optional_dependency("pyarrow")
pa_fs = import_optional_dependency("pyarrow.fs")
try:
fs, path_or_handle = pa_fs.FileSystem.from_uri(path)
except (TypeError, pa.ArrowInvalid):
pass
if fs is None:
fsspec = import_optional_dependency("fsspec")
fs, path_or_handle = fsspec.core.url_to_fs(
path_or_handle, **(storage_options or {})
)
elif storage_options and (not is_url(path_or_handle) or mode != "rb"):
# can't write to a remote url
# without making use of fsspec at the moment
raise ValueError("storage_options passed with buffer, or non-supported URL")
handles = None
if (
not fs
and not is_dir
and isinstance(path_or_handle, str)
and not os.path.isdir(path_or_handle)
):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path_or_handle, mode, is_text=False, storage_options=storage_options
)
fs = None
path_or_handle = handles.handle
return path_or_handle, handles, fs
class BaseImpl:
@staticmethod
def validate_dataframe(df: DataFrame) -> None:
if not isinstance(df, DataFrame):
raise ValueError("to_parquet only supports IO with DataFrames")
def write(self, df: DataFrame, path, compression, **kwargs):
raise AbstractMethodError(self)
def read(self, path, columns=None, **kwargs) -> DataFrame:
raise AbstractMethodError(self)
class PyArrowImpl(BaseImpl):
def __init__(self) -> None:
import_optional_dependency(
"pyarrow", extra="pyarrow is required for parquet support."
)
import pyarrow.parquet
# import utils to register the pyarrow extension types
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401
self.api = pyarrow
def write(
self,
df: DataFrame,
path: FilePath | WriteBuffer[bytes],
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions | None = None,
partition_cols: list[str] | None = None,
filesystem=None,
**kwargs,
) -> None:
self.validate_dataframe(df)
from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)}
if index is not None:
from_pandas_kwargs["preserve_index"] = index
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
if df.attrs:
df_metadata = {"PANDAS_ATTRS": json.dumps(df.attrs)}
existing_metadata = table.schema.metadata
merged_metadata = {**existing_metadata, **df_metadata}
table = table.replace_schema_metadata(merged_metadata)
path_or_handle, handles, filesystem = _get_path_or_handle(
path,
filesystem,
storage_options=storage_options,
mode="wb",
is_dir=partition_cols is not None,
)
if (
isinstance(path_or_handle, io.BufferedWriter)
and hasattr(path_or_handle, "name")
and isinstance(path_or_handle.name, (str, bytes))
):
if isinstance(path_or_handle.name, bytes):
path_or_handle = path_or_handle.name.decode()
else:
path_or_handle = path_or_handle.name
try:
if partition_cols is not None:
# writes to multiple files under the given path
self.api.parquet.write_to_dataset(
table,
path_or_handle,
compression=compression,
partition_cols=partition_cols,
filesystem=filesystem,
**kwargs,
)
else:
# write to single output file
self.api.parquet.write_table(
table,
path_or_handle,
compression=compression,
filesystem=filesystem,
**kwargs,
)
finally:
if handles is not None:
handles.close()
def read(
self,
path,
columns=None,
filters=None,
use_nullable_dtypes: bool = False,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
storage_options: StorageOptions | None = None,
filesystem=None,
**kwargs,
) -> DataFrame:
kwargs["use_pandas_metadata"] = True
to_pandas_kwargs = {}
if dtype_backend == "numpy_nullable":
from pandas.io._util import _arrow_dtype_mapping
mapping = _arrow_dtype_mapping()
to_pandas_kwargs["types_mapper"] = mapping.get
elif dtype_backend == "pyarrow":
to_pandas_kwargs["types_mapper"] = pd.ArrowDtype # type: ignore[assignment]
elif using_pyarrow_string_dtype():
to_pandas_kwargs["types_mapper"] = arrow_string_types_mapper()
manager = _get_option("mode.data_manager", silent=True)
if manager == "array":
to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment]
path_or_handle, handles, filesystem = _get_path_or_handle(
path,
filesystem,
storage_options=storage_options,
mode="rb",
)
try:
pa_table = self.api.parquet.read_table(
path_or_handle,
columns=columns,
filesystem=filesystem,
filters=filters,
**kwargs,
)
result = pa_table.to_pandas(**to_pandas_kwargs)
if manager == "array":
result = result._as_manager("array", copy=False)
if pa_table.schema.metadata:
if b"PANDAS_ATTRS" in pa_table.schema.metadata:
df_metadata = pa_table.schema.metadata[b"PANDAS_ATTRS"]
result.attrs = json.loads(df_metadata)
return result
finally:
if handles is not None:
handles.close()
class FastParquetImpl(BaseImpl):
def __init__(self) -> None:
# since pandas is a dependency of fastparquet
# we need to import on first use
fastparquet = import_optional_dependency(
"fastparquet", extra="fastparquet is required for parquet support."
)
self.api = fastparquet
def write(
self,
df: DataFrame,
path,
compression: Literal["snappy", "gzip", "brotli"] | None = "snappy",
index=None,
partition_cols=None,
storage_options: StorageOptions | None = None,
filesystem=None,
**kwargs,
) -> None:
self.validate_dataframe(df)
if "partition_on" in kwargs and partition_cols is not None:
raise ValueError(
"Cannot use both partition_on and "
"partition_cols. Use partition_cols for partitioning data"
)
if "partition_on" in kwargs:
partition_cols = kwargs.pop("partition_on")
if partition_cols is not None:
kwargs["file_scheme"] = "hive"
if filesystem is not None:
raise NotImplementedError(
"filesystem is not implemented for the fastparquet engine."
)
# cannot use get_handle as write() does not accept file buffers
path = stringify_path(path)
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
# if filesystem is provided by fsspec, file must be opened in 'wb' mode.
kwargs["open_with"] = lambda path, _: fsspec.open(
path, "wb", **(storage_options or {})
).open()
elif storage_options:
raise ValueError(
"storage_options passed with file object or non-fsspec file path"
)
with catch_warnings(record=True):
self.api.write(
path,
df,
compression=compression,
write_index=index,
partition_on=partition_cols,
**kwargs,
)
def read(
self,
path,
columns=None,
filters=None,
storage_options: StorageOptions | None = None,
filesystem=None,
**kwargs,
) -> DataFrame:
parquet_kwargs: dict[str, Any] = {}
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
dtype_backend = kwargs.pop("dtype_backend", lib.no_default)
# We are disabling nullable dtypes for fastparquet pending discussion
parquet_kwargs["pandas_nulls"] = False
if use_nullable_dtypes:
raise ValueError(
"The 'use_nullable_dtypes' argument is not supported for the "
"fastparquet engine"
)
if dtype_backend is not lib.no_default:
raise ValueError(
"The 'dtype_backend' argument is not supported for the "
"fastparquet engine"
)
if filesystem is not None:
raise NotImplementedError(
"filesystem is not implemented for the fastparquet engine."
)
path = stringify_path(path)
handles = None
if is_fsspec_url(path):
fsspec = import_optional_dependency("fsspec")
parquet_kwargs["fs"] = fsspec.open(path, "rb", **(storage_options or {})).fs
elif isinstance(path, str) and not os.path.isdir(path):
# use get_handle only when we are very certain that it is not a directory
# fsspec resources can also point to directories
# this branch is used for example when reading from non-fsspec URLs
handles = get_handle(
path, "rb", is_text=False, storage_options=storage_options
)
path = handles.handle
try:
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
return parquet_file.to_pandas(columns=columns, filters=filters, **kwargs)
finally:
if handles is not None:
handles.close()
@doc(storage_options=_shared_docs["storage_options"])
def to_parquet(
df: DataFrame,
path: FilePath | WriteBuffer[bytes] | None = None,
engine: str = "auto",
compression: str | None = "snappy",
index: bool | None = None,
storage_options: StorageOptions | None = None,
partition_cols: list[str] | None = None,
filesystem: Any = None,
**kwargs,
) -> bytes | None:
"""
Write a DataFrame to the parquet format.
Parameters
----------
df : DataFrame
path : str, path object, file-like object, or None, default None
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function. If None, the result is
returned as bytes. If a string, it will be used as Root Directory path
when writing a partitioned dataset. The engine fastparquet does not
accept file-like objects.
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
When using the ``'pyarrow'`` engine and no storage options are provided
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
Use the filesystem keyword with an instantiated fsspec filesystem
if you wish to use its implementation.
compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
default 'snappy'. Name of the compression to use. Use ``None``
for no compression.
index : bool, default None
If ``True``, include the dataframe's index(es) in the file output. If
``False``, they will not be written to the file.
If ``None``, similar to ``True`` the dataframe's index(es)
will be saved. However, instead of being saved as values,
the RangeIndex will be stored as a range in the metadata so it
doesn't require much space and is faster. Other indexes will
be included as columns in the file output.
partition_cols : str or list, optional, default None
Column names by which to partition the dataset.
Columns are partitioned in the order they are given.
Must be None if path is not a string.
{storage_options}
filesystem : fsspec or pyarrow filesystem, default None
Filesystem object to use when reading the parquet file. Only implemented
for ``engine="pyarrow"``.
.. versionadded:: 2.1.0
kwargs
Additional keyword arguments passed to the engine
Returns
-------
bytes if no path argument is provided else None
"""
if isinstance(partition_cols, str):
partition_cols = [partition_cols]
impl = get_engine(engine)
path_or_buf: FilePath | WriteBuffer[bytes] = io.BytesIO() if path is None else path
impl.write(
df,
path_or_buf,
compression=compression,
index=index,
partition_cols=partition_cols,
storage_options=storage_options,
filesystem=filesystem,
**kwargs,
)
if path is None:
assert isinstance(path_or_buf, io.BytesIO)
return path_or_buf.getvalue()
else:
return None
@doc(storage_options=_shared_docs["storage_options"])
def read_parquet(
path: FilePath | ReadBuffer[bytes],
engine: str = "auto",
columns: list[str] | None = None,
storage_options: StorageOptions | None = None,
use_nullable_dtypes: bool | lib.NoDefault = lib.no_default,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
filesystem: Any = None,
filters: list[tuple] | list[list[tuple]] | None = None,
**kwargs,
) -> DataFrame:
"""
Load a parquet object from the file path, returning a DataFrame.
Parameters
----------
path : str, path object or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``read()`` function.
The string could be a URL. Valid URL schemes include http, ftp, s3,
gs, and file. For file URLs, a host is expected. A local file could be:
``file://localhost/path/to/table.parquet``.
A file URL can also be a path to a directory that contains multiple
partitioned parquet files. Both pyarrow and fastparquet support
paths to directories as well as file URLs. A directory path could be:
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
Parquet library to use. If 'auto', then the option
``io.parquet.engine`` is used. The default ``io.parquet.engine``
behavior is to try 'pyarrow', falling back to 'fastparquet' if
'pyarrow' is unavailable.
When using the ``'pyarrow'`` engine and no storage options are provided
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
Use the filesystem keyword with an instantiated fsspec filesystem
if you wish to use its implementation.
columns : list, default=None
If not None, only these columns will be read from the file.
{storage_options}
.. versionadded:: 1.3.0
use_nullable_dtypes : bool, default False
If True, use dtypes that use ``pd.NA`` as missing value indicator
for the resulting DataFrame. (only applicable for the ``pyarrow``
engine)
As new dtypes are added that support ``pd.NA`` in the future, the
output with this option will change to use those dtypes.
Note: this is an experimental option, and behaviour (e.g. additional
support dtypes) may change without notice.
.. deprecated:: 2.0
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
Back-end data type applied to the resultant :class:`DataFrame`
(still experimental). Behaviour is as follows:
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
(default).
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
DataFrame.
.. versionadded:: 2.0
filesystem : fsspec or pyarrow filesystem, default None
Filesystem object to use when reading the parquet file. Only implemented
for ``engine="pyarrow"``.
.. versionadded:: 2.1.0
filters : List[Tuple] or List[List[Tuple]], default None
To filter out data.
Filter syntax: [[(column, op, val), ...],...]
where op is [==, =, >, >=, <, <=, !=, in, not in]
The innermost tuples are transposed into a set of filters applied
through an `AND` operation.
The outer list combines these sets of filters through an `OR`
operation.
A single list of tuples can also be used, meaning that no `OR`
operation between set of filters is to be conducted.
Using this argument will NOT result in row-wise filtering of the final
partitions unless ``engine="pyarrow"`` is also specified. For
other engines, filtering is only performed at the partition level, that is,
to prevent the loading of some row-groups and/or files.
.. versionadded:: 2.1.0
**kwargs
Any additional kwargs are passed to the engine.
Returns
-------
DataFrame
See Also
--------
DataFrame.to_parquet : Create a parquet object that serializes a DataFrame.
Examples
--------
>>> original_df = pd.DataFrame(
... {{"foo": range(5), "bar": range(5, 10)}}
... )
>>> original_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> df_parquet_bytes = original_df.to_parquet()
>>> from io import BytesIO
>>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes))
>>> restored_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> restored_df.equals(original_df)
True
>>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"])
>>> restored_bar
bar
0 5
1 6
2 7
3 8
4 9
>>> restored_bar.equals(original_df[['bar']])
True
The function uses `kwargs` that are passed directly to the engine.
In the following example, we use the `filters` argument of the pyarrow
engine to filter the rows of the DataFrame.
Since `pyarrow` is the default engine, we can omit the `engine` argument.
Note that the `filters` argument is implemented by the `pyarrow` engine,
which can benefit from multithreading and also potentially be more
economical in terms of memory.
>>> sel = [("foo", ">", 2)]
>>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel)
>>> restored_part
foo bar
0 3 8
1 4 9
"""
impl = get_engine(engine)
if use_nullable_dtypes is not lib.no_default:
msg = (
"The argument 'use_nullable_dtypes' is deprecated and will be removed "
"in a future version."
)
if use_nullable_dtypes is True:
msg += (
"Use dtype_backend='numpy_nullable' instead of use_nullable_dtype=True."
)
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
else:
use_nullable_dtypes = False
check_dtype_backend(dtype_backend)
return impl.read(
path,
columns=columns,
filters=filters,
storage_options=storage_options,
use_nullable_dtypes=use_nullable_dtypes,
dtype_backend=dtype_backend,
filesystem=filesystem,
**kwargs,
)