337 lines
13 KiB
Python
337 lines
13 KiB
Python
from __future__ import annotations
|
|
|
|
import io
|
|
from typing import TYPE_CHECKING, Any
|
|
|
|
from bokeh.io import export_png, export_svg, show
|
|
from bokeh.io.export import get_screenshot_as_png
|
|
from bokeh.layouts import gridplot
|
|
from bokeh.models.annotations.labels import Label
|
|
from bokeh.palettes import Category10
|
|
from bokeh.plotting import figure
|
|
import numpy as np
|
|
|
|
from contourpy.enum_util import as_fill_type, as_line_type
|
|
from contourpy.util.bokeh_util import filled_to_bokeh, lines_to_bokeh
|
|
from contourpy.util.renderer import Renderer
|
|
|
|
if TYPE_CHECKING:
|
|
from bokeh.models import GridPlot
|
|
from bokeh.palettes import Palette
|
|
from numpy.typing import ArrayLike
|
|
from selenium.webdriver.remote.webdriver import WebDriver
|
|
|
|
from contourpy import FillType, LineType
|
|
from contourpy._contourpy import FillReturn, LineReturn
|
|
|
|
|
|
class BokehRenderer(Renderer):
|
|
"""Utility renderer using Bokeh to render a grid of plots over the same (x, y) range.
|
|
|
|
Args:
|
|
nrows (int, optional): Number of rows of plots, default ``1``.
|
|
ncols (int, optional): Number of columns of plots, default ``1``.
|
|
figsize (tuple(float, float), optional): Figure size in inches (assuming 100 dpi), default
|
|
``(9, 9)``.
|
|
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
|
|
want_svg (bool, optional): Whether output is required in SVG format or not, default
|
|
``False``.
|
|
|
|
Warning:
|
|
:class:`~contourpy.util.bokeh_renderer.BokehRenderer`, unlike
|
|
:class:`~contourpy.util.mpl_renderer.MplRenderer`, needs to be told in advance if output to
|
|
SVG format will be required later, otherwise it will assume PNG output.
|
|
"""
|
|
_figures: list[figure]
|
|
_layout: GridPlot
|
|
_palette: Palette
|
|
_want_svg: bool
|
|
|
|
def __init__(
|
|
self,
|
|
nrows: int = 1,
|
|
ncols: int = 1,
|
|
figsize: tuple[float, float] = (9, 9),
|
|
show_frame: bool = True,
|
|
want_svg: bool = False,
|
|
) -> None:
|
|
self._want_svg = want_svg
|
|
self._palette = Category10[10]
|
|
|
|
total_size = 100*np.asarray(figsize, dtype=int) # Assuming 100 dpi.
|
|
|
|
nfigures = nrows*ncols
|
|
self._figures = []
|
|
backend = "svg" if self._want_svg else "canvas"
|
|
for _ in range(nfigures):
|
|
fig = figure(output_backend=backend)
|
|
fig.xgrid.visible = False
|
|
fig.ygrid.visible = False
|
|
self._figures.append(fig)
|
|
if not show_frame:
|
|
fig.outline_line_color = None # type: ignore[assignment]
|
|
fig.axis.visible = False
|
|
|
|
self._layout = gridplot(
|
|
self._figures, ncols=ncols, toolbar_location=None, # type: ignore[arg-type]
|
|
width=total_size[0] // ncols, height=total_size[1] // nrows)
|
|
|
|
def _convert_color(self, color: str) -> str:
|
|
if isinstance(color, str) and color[0] == "C":
|
|
index = int(color[1:])
|
|
color = self._palette[index]
|
|
return color
|
|
|
|
def _get_figure(self, ax: figure | int) -> figure:
|
|
if isinstance(ax, int):
|
|
ax = self._figures[ax]
|
|
return ax
|
|
|
|
def filled(
|
|
self,
|
|
filled: FillReturn,
|
|
fill_type: FillType | str,
|
|
ax: figure | int = 0,
|
|
color: str = "C0",
|
|
alpha: float = 0.7,
|
|
) -> None:
|
|
"""Plot filled contours on a single plot.
|
|
|
|
Args:
|
|
filled (sequence of arrays): Filled contour data as returned by
|
|
:func:`~contourpy.ContourGenerator.filled`.
|
|
fill_type (FillType or str): Type of ``filled`` data as returned by
|
|
:attr:`~contourpy.ContourGenerator.fill_type`, or a string equivalent.
|
|
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
|
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
|
|
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
|
``Category10`` palette. Default ``"C0"``.
|
|
alpha (float, optional): Opacity to plot with, default ``0.7``.
|
|
"""
|
|
fill_type = as_fill_type(fill_type)
|
|
fig = self._get_figure(ax)
|
|
color = self._convert_color(color)
|
|
xs, ys = filled_to_bokeh(filled, fill_type)
|
|
if len(xs) > 0:
|
|
fig.multi_polygons(xs=[xs], ys=[ys], color=color, fill_alpha=alpha, line_width=0)
|
|
|
|
def grid(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
ax: figure | int = 0,
|
|
color: str = "black",
|
|
alpha: float = 0.1,
|
|
point_color: str | None = None,
|
|
quad_as_tri_alpha: float = 0,
|
|
) -> None:
|
|
"""Plot quad grid lines on a single plot.
|
|
|
|
Args:
|
|
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
|
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
|
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
|
color (str, optional): Color to plot grid lines, default ``"black"``.
|
|
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
|
|
point_color (str, optional): Color to plot grid points or ``None`` if grid points
|
|
should not be plotted, default ``None``.
|
|
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default
|
|
``0``.
|
|
|
|
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
|
|
``"C0"`` to ``"C9"`` to use a color from the ``Category10`` palette.
|
|
|
|
Warning:
|
|
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
|
|
"""
|
|
fig = self._get_figure(ax)
|
|
x, y = self._grid_as_2d(x, y)
|
|
xs = list(x) + list(x.T)
|
|
ys = list(y) + list(y.T)
|
|
kwargs = {"line_color": color, "alpha": alpha}
|
|
fig.multi_line(xs, ys, **kwargs)
|
|
if quad_as_tri_alpha > 0:
|
|
# Assumes no quad mask.
|
|
xmid = (0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])).ravel()
|
|
ymid = (0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])).ravel()
|
|
fig.multi_line(
|
|
list(np.stack((x[:-1, :-1].ravel(), xmid, x[1:, 1:].ravel()), axis=1)),
|
|
list(np.stack((y[:-1, :-1].ravel(), ymid, y[1:, 1:].ravel()), axis=1)),
|
|
**kwargs)
|
|
fig.multi_line(
|
|
list(np.stack((x[:-1, 1:].ravel(), xmid, x[1:, :-1].ravel()), axis=1)),
|
|
list(np.stack((y[:-1, 1:].ravel(), ymid, y[1:, :-1].ravel()), axis=1)),
|
|
**kwargs)
|
|
if point_color is not None:
|
|
fig.circle(
|
|
x=x.ravel(), y=y.ravel(), fill_color=color, line_color=None, alpha=alpha, size=8)
|
|
|
|
def lines(
|
|
self,
|
|
lines: LineReturn,
|
|
line_type: LineType | str,
|
|
ax: figure | int = 0,
|
|
color: str = "C0",
|
|
alpha: float = 1.0,
|
|
linewidth: float = 1,
|
|
) -> None:
|
|
"""Plot contour lines on a single plot.
|
|
|
|
Args:
|
|
lines (sequence of arrays): Contour line data as returned by
|
|
:func:`~contourpy.ContourGenerator.lines`.
|
|
line_type (LineType or str): Type of ``lines`` data as returned by
|
|
:attr:`~contourpy.ContourGenerator.line_type`, or a string equivalent.
|
|
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
|
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
|
|
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
|
``Category10`` palette. Default ``"C0"``.
|
|
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
|
|
linewidth (float, optional): Width of lines, default ``1``.
|
|
|
|
Note:
|
|
Assumes all lines are open line strips not closed line loops.
|
|
"""
|
|
line_type = as_line_type(line_type)
|
|
fig = self._get_figure(ax)
|
|
color = self._convert_color(color)
|
|
xs, ys = lines_to_bokeh(lines, line_type)
|
|
if xs is not None:
|
|
fig.line(xs, ys, line_color=color, line_alpha=alpha, line_width=linewidth)
|
|
|
|
def mask(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
z: ArrayLike | np.ma.MaskedArray[Any, Any],
|
|
ax: figure | int = 0,
|
|
color: str = "black",
|
|
) -> None:
|
|
"""Plot masked out grid points as circles on a single plot.
|
|
|
|
Args:
|
|
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
|
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
|
z (masked array of shape (ny, nx): z-values.
|
|
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
|
color (str, optional): Circle color, default ``"black"``.
|
|
"""
|
|
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
|
|
if mask is np.ma.nomask:
|
|
return
|
|
fig = self._get_figure(ax)
|
|
color = self._convert_color(color)
|
|
x, y = self._grid_as_2d(x, y)
|
|
fig.circle(x[mask], y[mask], fill_color=color, size=10)
|
|
|
|
def save(
|
|
self,
|
|
filename: str,
|
|
transparent: bool = False,
|
|
*,
|
|
webdriver: WebDriver | None = None,
|
|
) -> None:
|
|
"""Save plots to SVG or PNG file.
|
|
|
|
Args:
|
|
filename (str): Filename to save to.
|
|
transparent (bool, optional): Whether background should be transparent, default
|
|
``False``.
|
|
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
|
|
|
|
.. versionadded:: 1.1.1
|
|
|
|
Warning:
|
|
To output to SVG file, ``want_svg=True`` must have been passed to the constructor.
|
|
"""
|
|
if transparent:
|
|
for fig in self._figures:
|
|
fig.background_fill_color = None # type: ignore[assignment]
|
|
fig.border_fill_color = None # type: ignore[assignment]
|
|
|
|
if self._want_svg:
|
|
export_svg(self._layout, filename=filename, webdriver=webdriver)
|
|
else:
|
|
export_png(self._layout, filename=filename, webdriver=webdriver)
|
|
|
|
def save_to_buffer(self, *, webdriver: WebDriver | None = None) -> io.BytesIO:
|
|
"""Save plots to an ``io.BytesIO`` buffer.
|
|
|
|
Args:
|
|
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
|
|
|
|
.. versionadded:: 1.1.1
|
|
|
|
Return:
|
|
BytesIO: PNG image buffer.
|
|
"""
|
|
image = get_screenshot_as_png(self._layout, driver=webdriver)
|
|
buffer = io.BytesIO()
|
|
image.save(buffer, "png")
|
|
return buffer
|
|
|
|
def show(self) -> None:
|
|
"""Show plots in web browser, in usual Bokeh manner.
|
|
"""
|
|
show(self._layout)
|
|
|
|
def title(self, title: str, ax: figure | int = 0, color: str | None = None) -> None:
|
|
"""Set the title of a single plot.
|
|
|
|
Args:
|
|
title (str): Title text.
|
|
ax (int or Bokeh Figure, optional): Which plot to set the title of, default ``0``.
|
|
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
|
|
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
|
``Category10`` palette. Default ``None`` which is ``black``.
|
|
"""
|
|
fig = self._get_figure(ax)
|
|
fig.title = title # type: ignore[assignment]
|
|
fig.title.align = "center" # type: ignore[attr-defined]
|
|
if color is not None:
|
|
fig.title.text_color = self._convert_color(color) # type: ignore[attr-defined]
|
|
|
|
def z_values(
|
|
self,
|
|
x: ArrayLike,
|
|
y: ArrayLike,
|
|
z: ArrayLike,
|
|
ax: figure | int = 0,
|
|
color: str = "green",
|
|
fmt: str = ".1f",
|
|
quad_as_tri: bool = False,
|
|
) -> None:
|
|
"""Show ``z`` values on a single plot.
|
|
|
|
Args:
|
|
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
|
|
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
|
|
z (array-like of shape (ny, nx): z-values.
|
|
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
|
|
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
|
|
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
|
|
``Category10`` palette. Default ``"green"``.
|
|
fmt (str, optional): Format to display z-values, default ``".1f"``.
|
|
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centres
|
|
of quads.
|
|
|
|
Warning:
|
|
``quad_as_tri=True`` shows z-values for all quads, even if masked.
|
|
"""
|
|
fig = self._get_figure(ax)
|
|
color = self._convert_color(color)
|
|
x, y = self._grid_as_2d(x, y)
|
|
z = np.asarray(z)
|
|
ny, nx = z.shape
|
|
kwargs = {"text_color": color, "text_align": "center", "text_baseline": "middle"}
|
|
for j in range(ny):
|
|
for i in range(nx):
|
|
fig.add_layout(Label(x=x[j, i], y=y[j, i], text=f"{z[j, i]:{fmt}}", **kwargs))
|
|
if quad_as_tri:
|
|
for j in range(ny-1):
|
|
for i in range(nx-1):
|
|
xx = np.mean(x[j:j+2, i:i+2])
|
|
yy = np.mean(y[j:j+2, i:i+2])
|
|
zz = np.mean(z[j:j+2, i:i+2])
|
|
fig.add_layout(Label(x=xx, y=yy, text=f"{zz:{fmt}}", **kwargs))
|