Traktor/myenv/Lib/site-packages/mpmath/functions/functions.py
2024-05-23 01:57:24 +02:00

646 lines
18 KiB
Python

from ..libmp.backend import xrange
class SpecialFunctions(object):
"""
This class implements special functions using high-level code.
Elementary and some other functions (e.g. gamma function, basecase
hypergeometric series) are assumed to be predefined by the context as
"builtins" or "low-level" functions.
"""
defined_functions = {}
# The series for the Jacobi theta functions converge for |q| < 1;
# in the current implementation they throw a ValueError for
# abs(q) > THETA_Q_LIM
THETA_Q_LIM = 1 - 10**-7
def __init__(self):
cls = self.__class__
for name in cls.defined_functions:
f, wrap = cls.defined_functions[name]
cls._wrap_specfun(name, f, wrap)
self.mpq_1 = self._mpq((1,1))
self.mpq_0 = self._mpq((0,1))
self.mpq_1_2 = self._mpq((1,2))
self.mpq_3_2 = self._mpq((3,2))
self.mpq_1_4 = self._mpq((1,4))
self.mpq_1_16 = self._mpq((1,16))
self.mpq_3_16 = self._mpq((3,16))
self.mpq_5_2 = self._mpq((5,2))
self.mpq_3_4 = self._mpq((3,4))
self.mpq_7_4 = self._mpq((7,4))
self.mpq_5_4 = self._mpq((5,4))
self.mpq_1_3 = self._mpq((1,3))
self.mpq_2_3 = self._mpq((2,3))
self.mpq_4_3 = self._mpq((4,3))
self.mpq_1_6 = self._mpq((1,6))
self.mpq_5_6 = self._mpq((5,6))
self.mpq_5_3 = self._mpq((5,3))
self._misc_const_cache = {}
self._aliases.update({
'phase' : 'arg',
'conjugate' : 'conj',
'nthroot' : 'root',
'polygamma' : 'psi',
'hurwitz' : 'zeta',
#'digamma' : 'psi0',
#'trigamma' : 'psi1',
#'tetragamma' : 'psi2',
#'pentagamma' : 'psi3',
'fibonacci' : 'fib',
'factorial' : 'fac',
})
self.zetazero_memoized = self.memoize(self.zetazero)
# Default -- do nothing
@classmethod
def _wrap_specfun(cls, name, f, wrap):
setattr(cls, name, f)
# Optional fast versions of common functions in common cases.
# If not overridden, default (generic hypergeometric series)
# implementations will be used
def _besselj(ctx, n, z): raise NotImplementedError
def _erf(ctx, z): raise NotImplementedError
def _erfc(ctx, z): raise NotImplementedError
def _gamma_upper_int(ctx, z, a): raise NotImplementedError
def _expint_int(ctx, n, z): raise NotImplementedError
def _zeta(ctx, s): raise NotImplementedError
def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError
def _ei(ctx, z): raise NotImplementedError
def _e1(ctx, z): raise NotImplementedError
def _ci(ctx, z): raise NotImplementedError
def _si(ctx, z): raise NotImplementedError
def _altzeta(ctx, s): raise NotImplementedError
def defun_wrapped(f):
SpecialFunctions.defined_functions[f.__name__] = f, True
return f
def defun(f):
SpecialFunctions.defined_functions[f.__name__] = f, False
return f
def defun_static(f):
setattr(SpecialFunctions, f.__name__, f)
return f
@defun_wrapped
def cot(ctx, z): return ctx.one / ctx.tan(z)
@defun_wrapped
def sec(ctx, z): return ctx.one / ctx.cos(z)
@defun_wrapped
def csc(ctx, z): return ctx.one / ctx.sin(z)
@defun_wrapped
def coth(ctx, z): return ctx.one / ctx.tanh(z)
@defun_wrapped
def sech(ctx, z): return ctx.one / ctx.cosh(z)
@defun_wrapped
def csch(ctx, z): return ctx.one / ctx.sinh(z)
@defun_wrapped
def acot(ctx, z):
if not z:
return ctx.pi * 0.5
else:
return ctx.atan(ctx.one / z)
@defun_wrapped
def asec(ctx, z): return ctx.acos(ctx.one / z)
@defun_wrapped
def acsc(ctx, z): return ctx.asin(ctx.one / z)
@defun_wrapped
def acoth(ctx, z):
if not z:
return ctx.pi * 0.5j
else:
return ctx.atanh(ctx.one / z)
@defun_wrapped
def asech(ctx, z): return ctx.acosh(ctx.one / z)
@defun_wrapped
def acsch(ctx, z): return ctx.asinh(ctx.one / z)
@defun
def sign(ctx, x):
x = ctx.convert(x)
if not x or ctx.isnan(x):
return x
if ctx._is_real_type(x):
if x > 0:
return ctx.one
else:
return -ctx.one
return x / abs(x)
@defun
def agm(ctx, a, b=1):
if b == 1:
return ctx.agm1(a)
a = ctx.convert(a)
b = ctx.convert(b)
return ctx._agm(a, b)
@defun_wrapped
def sinc(ctx, x):
if ctx.isinf(x):
return 1/x
if not x:
return x+1
return ctx.sin(x)/x
@defun_wrapped
def sincpi(ctx, x):
if ctx.isinf(x):
return 1/x
if not x:
return x+1
return ctx.sinpi(x)/(ctx.pi*x)
# TODO: tests; improve implementation
@defun_wrapped
def expm1(ctx, x):
if not x:
return ctx.zero
# exp(x) - 1 ~ x
if ctx.mag(x) < -ctx.prec:
return x + 0.5*x**2
# TODO: accurately eval the smaller of the real/imag parts
return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1)
@defun_wrapped
def log1p(ctx, x):
if not x:
return ctx.zero
if ctx.mag(x) < -ctx.prec:
return x - 0.5*x**2
return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec))
@defun_wrapped
def powm1(ctx, x, y):
mag = ctx.mag
one = ctx.one
w = x**y - one
M = mag(w)
# Only moderate cancellation
if M > -8:
return w
# Check for the only possible exact cases
if not w:
if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)):
return w
x1 = x - one
magy = mag(y)
lnx = ctx.ln(x)
# Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2)
if magy + mag(lnx) < -ctx.prec:
return lnx*y + (lnx*y)**2/2
# TODO: accurately eval the smaller of the real/imag part
return ctx.sum_accurately(lambda: iter([x**y, -1]), 1)
@defun
def _rootof1(ctx, k, n):
k = int(k)
n = int(n)
k %= n
if not k:
return ctx.one
elif 2*k == n:
return -ctx.one
elif 4*k == n:
return ctx.j
elif 4*k == 3*n:
return -ctx.j
return ctx.expjpi(2*ctx.mpf(k)/n)
@defun
def root(ctx, x, n, k=0):
n = int(n)
x = ctx.convert(x)
if k:
# Special case: there is an exact real root
if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0):
return -ctx.root(-x, n)
# Multiply by root of unity
prec = ctx.prec
try:
ctx.prec += 10
v = ctx.root(x, n, 0) * ctx._rootof1(k, n)
finally:
ctx.prec = prec
return +v
return ctx._nthroot(x, n)
@defun
def unitroots(ctx, n, primitive=False):
gcd = ctx._gcd
prec = ctx.prec
try:
ctx.prec += 10
if primitive:
v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1]
else:
# TODO: this can be done *much* faster
v = [ctx._rootof1(k,n) for k in range(n)]
finally:
ctx.prec = prec
return [+x for x in v]
@defun
def arg(ctx, x):
x = ctx.convert(x)
re = ctx._re(x)
im = ctx._im(x)
return ctx.atan2(im, re)
@defun
def fabs(ctx, x):
return abs(ctx.convert(x))
@defun
def re(ctx, x):
x = ctx.convert(x)
if hasattr(x, "real"): # py2.5 doesn't have .real/.imag for all numbers
return x.real
return x
@defun
def im(ctx, x):
x = ctx.convert(x)
if hasattr(x, "imag"): # py2.5 doesn't have .real/.imag for all numbers
return x.imag
return ctx.zero
@defun
def conj(ctx, x):
x = ctx.convert(x)
try:
return x.conjugate()
except AttributeError:
return x
@defun
def polar(ctx, z):
return (ctx.fabs(z), ctx.arg(z))
@defun_wrapped
def rect(ctx, r, phi):
return r * ctx.mpc(*ctx.cos_sin(phi))
@defun
def log(ctx, x, b=None):
if b is None:
return ctx.ln(x)
wp = ctx.prec + 20
return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp)
@defun
def log10(ctx, x):
return ctx.log(x, 10)
@defun
def fmod(ctx, x, y):
return ctx.convert(x) % ctx.convert(y)
@defun
def degrees(ctx, x):
return x / ctx.degree
@defun
def radians(ctx, x):
return x * ctx.degree
def _lambertw_special(ctx, z, k):
# W(0,0) = 0; all other branches are singular
if not z:
if not k:
return z
return ctx.ninf + z
if z == ctx.inf:
if k == 0:
return z
else:
return z + 2*k*ctx.pi*ctx.j
if z == ctx.ninf:
return (-z) + (2*k+1)*ctx.pi*ctx.j
# Some kind of nan or complex inf/nan?
return ctx.ln(z)
import math
import cmath
def _lambertw_approx_hybrid(z, k):
imag_sign = 0
if hasattr(z, "imag"):
x = float(z.real)
y = z.imag
if y:
imag_sign = (-1) ** (y < 0)
y = float(y)
else:
x = float(z)
y = 0.0
imag_sign = 0
# hack to work regardless of whether Python supports -0.0
if not y:
y = 0.0
z = complex(x,y)
if k == 0:
if -4.0 < y < 4.0 and -1.0 < x < 2.5:
if imag_sign:
# Taylor series in upper/lower half-plane
if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j))
if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j))
if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j))
if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j))
# Taylor series near -1
if x < -0.5:
if imag_sign >= 0:
return (-0.318+1.34j) + (-0.697-0.593j)*(z+1)
else:
return (-0.318-1.34j) + (-0.697+0.593j)*(z+1)
# return real type
r = -0.367879441171442
if (not imag_sign) and x > r:
z = x
# Singularity near -1/e
if x < -0.2:
return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
# Taylor series near 0
if x < 0.5: return z
# Simple linear approximation
return 0.2 + 0.3*z
if (not imag_sign) and x > 0.0:
L1 = math.log(x); L2 = math.log(L1)
else:
L1 = cmath.log(z); L2 = cmath.log(L1)
elif k == -1:
# return real type
r = -0.367879441171442
if (not imag_sign) and r < x < 0.0:
z = x
if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2:
return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r)
if (not imag_sign) and -0.2 <= x < 0.0:
L1 = math.log(-x)
return L1 - math.log(-L1)
else:
if imag_sign == -1 and (not y) and x < 0.0:
L1 = cmath.log(z) - 3.1415926535897932j
else:
L1 = cmath.log(z) - 6.2831853071795865j
L2 = cmath.log(L1)
return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2)
def _lambertw_series(ctx, z, k, tol):
"""
Return rough approximation for W_k(z) from an asymptotic series,
sufficiently accurate for the Halley iteration to converge to
the correct value.
"""
magz = ctx.mag(z)
if (-10 < magz < 900) and (-1000 < k < 1000):
# Near the branch point at -1/e
if magz < 1 and abs(z+0.36787944117144) < 0.05:
if k == 0 or (k == -1 and ctx._im(z) >= 0) or \
(k == 1 and ctx._im(z) < 0):
delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)])
cancellation = -ctx.mag(delta)
ctx.prec += cancellation
# Use series given in Corless et al.
p = ctx.sqrt(2*(ctx.e*z+1))
ctx.prec -= cancellation
u = {0:ctx.mpf(-1), 1:ctx.mpf(1)}
a = {0:ctx.mpf(2), 1:ctx.mpf(-1)}
if k != 0:
p = -p
s = ctx.zero
# The series converges, so we could use it directly, but unless
# *extremely* close, it is better to just use the first few
# terms to get a good approximation for the iteration
for l in xrange(max(2,cancellation)):
if l not in u:
a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l))
u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1)
term = u[l] * p**l
s += term
if ctx.mag(term) < -tol:
return s, True
l += 1
ctx.prec += cancellation//2
return s, False
if k == 0 or k == -1:
return _lambertw_approx_hybrid(z, k), False
if k == 0:
if magz < -1:
return z*(1-z), False
L1 = ctx.ln(z)
L2 = ctx.ln(L1)
elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0):
L1 = ctx.ln(-z)
return L1 - ctx.ln(-L1), False
else:
# This holds both as z -> 0 and z -> inf.
# Relative error is O(1/log(z)).
L1 = ctx.ln(z) + 2j*ctx.pi*k
L2 = ctx.ln(L1)
return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False
@defun
def lambertw(ctx, z, k=0):
z = ctx.convert(z)
k = int(k)
if not ctx.isnormal(z):
return _lambertw_special(ctx, z, k)
prec = ctx.prec
ctx.prec += 20 + ctx.mag(k or 1)
wp = ctx.prec
tol = wp - 5
w, done = _lambertw_series(ctx, z, k, tol)
if not done:
# Use Halley iteration to solve w*exp(w) = z
two = ctx.mpf(2)
for i in xrange(100):
ew = ctx.exp(w)
wew = w*ew
wewz = wew-z
wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two))
if ctx.mag(wn-w) <= ctx.mag(wn) - tol:
w = wn
break
else:
w = wn
if i == 100:
ctx.warn("Lambert W iteration failed to converge for z = %s" % z)
ctx.prec = prec
return +w
@defun_wrapped
def bell(ctx, n, x=1):
x = ctx.convert(x)
if not n:
if ctx.isnan(x):
return x
return type(x)(1)
if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n):
return x**n
if n == 1: return x
if n == 2: return x*(x+1)
if x == 0: return ctx.sincpi(n)
return _polyexp(ctx, n, x, True) / ctx.exp(x)
def _polyexp(ctx, n, x, extra=False):
def _terms():
if extra:
yield ctx.sincpi(n)
t = x
k = 1
while 1:
yield k**n * t
k += 1
t = t*x/k
return ctx.sum_accurately(_terms, check_step=4)
@defun_wrapped
def polyexp(ctx, s, z):
if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s):
return z**s
if z == 0: return z*s
if s == 0: return ctx.expm1(z)
if s == 1: return ctx.exp(z)*z
if s == 2: return ctx.exp(z)*z*(z+1)
return _polyexp(ctx, s, z)
@defun_wrapped
def cyclotomic(ctx, n, z):
n = int(n)
if n < 0:
raise ValueError("n cannot be negative")
p = ctx.one
if n == 0:
return p
if n == 1:
return z - p
if n == 2:
return z + p
# Use divisor product representation. Unfortunately, this sometimes
# includes singularities for roots of unity, which we have to cancel out.
# Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1).
a_prod = 1
b_prod = 1
num_zeros = 0
num_poles = 0
for d in range(1,n+1):
if not n % d:
w = ctx.moebius(n//d)
# Use powm1 because it is important that we get 0 only
# if it really is exactly 0
b = -ctx.powm1(z, d)
if b:
p *= b**w
else:
if w == 1:
a_prod *= d
num_zeros += 1
elif w == -1:
b_prod *= d
num_poles += 1
#print n, num_zeros, num_poles
if num_zeros:
if num_zeros > num_poles:
p *= 0
else:
p *= a_prod
p /= b_prod
return p
@defun
def mangoldt(ctx, n):
r"""
Evaluates the von Mangoldt function `\Lambda(n) = \log p`
if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise.
**Examples**
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> [mangoldt(n) for n in range(-2,3)]
[0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321]
>>> mangoldt(6)
0.0
>>> mangoldt(7)
1.945910149055313305105353
>>> mangoldt(8)
0.6931471805599453094172321
>>> fsum(mangoldt(n) for n in range(101))
94.04531122935739224600493
>>> fsum(mangoldt(n) for n in range(10001))
10013.39669326311478372032
"""
n = int(n)
if n < 2:
return ctx.zero
if n % 2 == 0:
# Must be a power of two
if n & (n-1) == 0:
return +ctx.ln2
else:
return ctx.zero
# TODO: the following could be generalized into a perfect
# power testing function
# ---
# Look for a small factor
for p in (3,5,7,11,13,17,19,23,29,31):
if not n % p:
q, r = n // p, 0
while q > 1:
q, r = divmod(q, p)
if r:
return ctx.zero
return ctx.ln(p)
if ctx.isprime(n):
return ctx.ln(n)
# Obviously, we could use arbitrary-precision arithmetic for this...
if n > 10**30:
raise NotImplementedError
k = 2
while 1:
p = int(n**(1./k) + 0.5)
if p < 2:
return ctx.zero
if p ** k == n:
if ctx.isprime(p):
return ctx.ln(p)
k += 1
@defun
def stirling1(ctx, n, k, exact=False):
v = ctx._stirling1(int(n), int(k))
if exact:
return int(v)
else:
return ctx.mpf(v)
@defun
def stirling2(ctx, n, k, exact=False):
v = ctx._stirling2(int(n), int(k))
if exact:
return int(v)
else:
return ctx.mpf(v)