Traktor/myenv/Lib/site-packages/sklearn/datasets/_kddcup99.py
2024-05-23 01:57:24 +02:00

427 lines
14 KiB
Python

"""KDDCUP 99 dataset.
A classic dataset for anomaly detection.
The dataset page is available from UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
"""
import errno
import logging
import os
from gzip import GzipFile
from numbers import Integral, Real
from os.path import exists, join
import joblib
import numpy as np
from ..utils import Bunch, check_random_state
from ..utils import shuffle as shuffle_method
from ..utils._param_validation import Interval, StrOptions, validate_params
from . import get_data_home
from ._base import (
RemoteFileMetadata,
_convert_data_dataframe,
_fetch_remote,
load_descr,
)
# The original data can be found at:
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
ARCHIVE = RemoteFileMetadata(
filename="kddcup99_data",
url="https://ndownloader.figshare.com/files/5976045",
checksum="3b6c942aa0356c0ca35b7b595a26c89d343652c9db428893e7494f837b274292",
)
# The original data can be found at:
# https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz
ARCHIVE_10_PERCENT = RemoteFileMetadata(
filename="kddcup99_10_data",
url="https://ndownloader.figshare.com/files/5976042",
checksum="8045aca0d84e70e622d1148d7df782496f6333bf6eb979a1b0837c42a9fd9561",
)
logger = logging.getLogger(__name__)
@validate_params(
{
"subset": [StrOptions({"SA", "SF", "http", "smtp"}), None],
"data_home": [str, os.PathLike, None],
"shuffle": ["boolean"],
"random_state": ["random_state"],
"percent10": ["boolean"],
"download_if_missing": ["boolean"],
"return_X_y": ["boolean"],
"as_frame": ["boolean"],
"n_retries": [Interval(Integral, 1, None, closed="left")],
"delay": [Interval(Real, 0.0, None, closed="neither")],
},
prefer_skip_nested_validation=True,
)
def fetch_kddcup99(
*,
subset=None,
data_home=None,
shuffle=False,
random_state=None,
percent10=True,
download_if_missing=True,
return_X_y=False,
as_frame=False,
n_retries=3,
delay=1.0,
):
"""Load the kddcup99 dataset (classification).
Download it if necessary.
================= ====================================
Classes 23
Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
================= ====================================
Read more in the :ref:`User Guide <kddcup99_dataset>`.
.. versionadded:: 0.18
Parameters
----------
subset : {'SA', 'SF', 'http', 'smtp'}, default=None
To return the corresponding classical subsets of kddcup 99.
If None, return the entire kddcup 99 dataset.
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
.. versionadded:: 0.19
shuffle : bool, default=False
Whether to shuffle dataset.
random_state : int, RandomState instance or None, default=None
Determines random number generation for dataset shuffling and for
selection of abnormal samples if `subset='SA'`. Pass an int for
reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
return_X_y : bool, default=False
If True, returns ``(data, target)`` instead of a Bunch object. See
below for more information about the `data` and `target` object.
.. versionadded:: 0.20
as_frame : bool, default=False
If `True`, returns a pandas Dataframe for the ``data`` and ``target``
objects in the `Bunch` returned object; `Bunch` return object will also
have a ``frame`` member.
.. versionadded:: 0.24
n_retries : int, default=3
Number of retries when HTTP errors are encountered.
.. versionadded:: 1.5
delay : float, default=1.0
Number of seconds between retries.
.. versionadded:: 1.5
Returns
-------
data : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : {ndarray, dataframe} of shape (494021, 41)
The data matrix to learn. If `as_frame=True`, `data` will be a
pandas DataFrame.
target : {ndarray, series} of shape (494021,)
The regression target for each sample. If `as_frame=True`, `target`
will be a pandas Series.
frame : dataframe of shape (494021, 42)
Only present when `as_frame=True`. Contains `data` and `target`.
DESCR : str
The full description of the dataset.
feature_names : list
The names of the dataset columns
target_names: list
The names of the target columns
(data, target) : tuple if ``return_X_y`` is True
A tuple of two ndarray. The first containing a 2D array of
shape (n_samples, n_features) with each row representing one
sample and each column representing the features. The second
ndarray of shape (n_samples,) containing the target samples.
.. versionadded:: 0.20
"""
data_home = get_data_home(data_home=data_home)
kddcup99 = _fetch_brute_kddcup99(
data_home=data_home,
percent10=percent10,
download_if_missing=download_if_missing,
n_retries=n_retries,
delay=delay,
)
data = kddcup99.data
target = kddcup99.target
feature_names = kddcup99.feature_names
target_names = kddcup99.target_names
if subset == "SA":
s = target == b"normal."
t = np.logical_not(s)
normal_samples = data[s, :]
normal_targets = target[s]
abnormal_samples = data[t, :]
abnormal_targets = target[t]
n_samples_abnormal = abnormal_samples.shape[0]
# selected abnormal samples:
random_state = check_random_state(random_state)
r = random_state.randint(0, n_samples_abnormal, 3377)
abnormal_samples = abnormal_samples[r]
abnormal_targets = abnormal_targets[r]
data = np.r_[normal_samples, abnormal_samples]
target = np.r_[normal_targets, abnormal_targets]
if subset == "SF" or subset == "http" or subset == "smtp":
# select all samples with positive logged_in attribute:
s = data[:, 11] == 1
data = np.c_[data[s, :11], data[s, 12:]]
feature_names = feature_names[:11] + feature_names[12:]
target = target[s]
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False))
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float, copy=False))
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float, copy=False))
if subset == "http":
s = data[:, 2] == b"http"
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
feature_names = [feature_names[0], feature_names[4], feature_names[5]]
if subset == "smtp":
s = data[:, 2] == b"smtp"
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
feature_names = [feature_names[0], feature_names[4], feature_names[5]]
if subset == "SF":
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]
feature_names = [
feature_names[0],
feature_names[2],
feature_names[4],
feature_names[5],
]
if shuffle:
data, target = shuffle_method(data, target, random_state=random_state)
fdescr = load_descr("kddcup99.rst")
frame = None
if as_frame:
frame, data, target = _convert_data_dataframe(
"fetch_kddcup99", data, target, feature_names, target_names
)
if return_X_y:
return data, target
return Bunch(
data=data,
target=target,
frame=frame,
target_names=target_names,
feature_names=feature_names,
DESCR=fdescr,
)
def _fetch_brute_kddcup99(
data_home=None, download_if_missing=True, percent10=True, n_retries=3, delay=1.0
):
"""Load the kddcup99 dataset, downloading it if necessary.
Parameters
----------
data_home : str, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
n_retries : int, default=3
Number of retries when HTTP errors are encountered.
delay : float, default=1.0
Number of seconds between retries.
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray of shape (494021, 41)
Each row corresponds to the 41 features in the dataset.
target : ndarray of shape (494021,)
Each value corresponds to one of the 21 attack types or to the
label 'normal.'.
feature_names : list
The names of the dataset columns
target_names: list
The names of the target columns
DESCR : str
Description of the kddcup99 dataset.
"""
data_home = get_data_home(data_home=data_home)
dir_suffix = "-py3"
if percent10:
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix)
archive = ARCHIVE_10_PERCENT
else:
kddcup_dir = join(data_home, "kddcup99" + dir_suffix)
archive = ARCHIVE
samples_path = join(kddcup_dir, "samples")
targets_path = join(kddcup_dir, "targets")
available = exists(samples_path)
dt = [
("duration", int),
("protocol_type", "S4"),
("service", "S11"),
("flag", "S6"),
("src_bytes", int),
("dst_bytes", int),
("land", int),
("wrong_fragment", int),
("urgent", int),
("hot", int),
("num_failed_logins", int),
("logged_in", int),
("num_compromised", int),
("root_shell", int),
("su_attempted", int),
("num_root", int),
("num_file_creations", int),
("num_shells", int),
("num_access_files", int),
("num_outbound_cmds", int),
("is_host_login", int),
("is_guest_login", int),
("count", int),
("srv_count", int),
("serror_rate", float),
("srv_serror_rate", float),
("rerror_rate", float),
("srv_rerror_rate", float),
("same_srv_rate", float),
("diff_srv_rate", float),
("srv_diff_host_rate", float),
("dst_host_count", int),
("dst_host_srv_count", int),
("dst_host_same_srv_rate", float),
("dst_host_diff_srv_rate", float),
("dst_host_same_src_port_rate", float),
("dst_host_srv_diff_host_rate", float),
("dst_host_serror_rate", float),
("dst_host_srv_serror_rate", float),
("dst_host_rerror_rate", float),
("dst_host_srv_rerror_rate", float),
("labels", "S16"),
]
column_names = [c[0] for c in dt]
target_names = column_names[-1]
feature_names = column_names[:-1]
if available:
try:
X = joblib.load(samples_path)
y = joblib.load(targets_path)
except Exception as e:
raise OSError(
"The cache for fetch_kddcup99 is invalid, please delete "
f"{str(kddcup_dir)} and run the fetch_kddcup99 again"
) from e
elif download_if_missing:
_mkdirp(kddcup_dir)
logger.info("Downloading %s" % archive.url)
_fetch_remote(archive, dirname=kddcup_dir, n_retries=n_retries, delay=delay)
DT = np.dtype(dt)
logger.debug("extracting archive")
archive_path = join(kddcup_dir, archive.filename)
file_ = GzipFile(filename=archive_path, mode="r")
Xy = []
for line in file_.readlines():
line = line.decode()
Xy.append(line.replace("\n", "").split(","))
file_.close()
logger.debug("extraction done")
os.remove(archive_path)
Xy = np.asarray(Xy, dtype=object)
for j in range(42):
Xy[:, j] = Xy[:, j].astype(DT[j])
X = Xy[:, :-1]
y = Xy[:, -1]
# XXX bug when compress!=0:
# (error: 'Incorrect data length while decompressing[...] the file
# could be corrupted.')
joblib.dump(X, samples_path, compress=0)
joblib.dump(y, targets_path, compress=0)
else:
raise OSError("Data not found and `download_if_missing` is False")
return Bunch(
data=X,
target=y,
feature_names=feature_names,
target_names=[target_names],
)
def _mkdirp(d):
"""Ensure directory d exists (like mkdir -p on Unix)
No guarantee that the directory is writable.
"""
try:
os.makedirs(d)
except OSError as e:
if e.errno != errno.EEXIST:
raise