333 lines
8.2 KiB
Python
333 lines
8.2 KiB
Python
from sympy.combinatorics.group_constructs import DirectProduct
|
|
from sympy.combinatorics.perm_groups import PermutationGroup
|
|
from sympy.combinatorics.permutations import Permutation
|
|
|
|
_af_new = Permutation._af_new
|
|
|
|
|
|
def AbelianGroup(*cyclic_orders):
|
|
"""
|
|
Returns the direct product of cyclic groups with the given orders.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
According to the structure theorem for finite abelian groups ([1]),
|
|
every finite abelian group can be written as the direct product of
|
|
finitely many cyclic groups.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.combinatorics.named_groups import AbelianGroup
|
|
>>> AbelianGroup(3, 4)
|
|
PermutationGroup([
|
|
(6)(0 1 2),
|
|
(3 4 5 6)])
|
|
>>> _.is_group
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
DirectProduct
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups
|
|
|
|
"""
|
|
groups = []
|
|
degree = 0
|
|
order = 1
|
|
for size in cyclic_orders:
|
|
degree += size
|
|
order *= size
|
|
groups.append(CyclicGroup(size))
|
|
G = DirectProduct(*groups)
|
|
G._is_abelian = True
|
|
G._degree = degree
|
|
G._order = order
|
|
|
|
return G
|
|
|
|
|
|
def AlternatingGroup(n):
|
|
"""
|
|
Generates the alternating group on ``n`` elements as a permutation group.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for
|
|
``n`` odd
|
|
and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.).
|
|
After the group is generated, some of its basic properties are set.
|
|
The cases ``n = 1, 2`` are handled separately.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
|
>>> G = AlternatingGroup(4)
|
|
>>> G.is_group
|
|
True
|
|
>>> a = list(G.generate_dimino())
|
|
>>> len(a)
|
|
12
|
|
>>> all(perm.is_even for perm in a)
|
|
True
|
|
|
|
See Also
|
|
========
|
|
|
|
SymmetricGroup, CyclicGroup, DihedralGroup
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Armstrong, M. "Groups and Symmetry"
|
|
|
|
"""
|
|
# small cases are special
|
|
if n in (1, 2):
|
|
return PermutationGroup([Permutation([0])])
|
|
|
|
a = list(range(n))
|
|
a[0], a[1], a[2] = a[1], a[2], a[0]
|
|
gen1 = a
|
|
if n % 2:
|
|
a = list(range(1, n))
|
|
a.append(0)
|
|
gen2 = a
|
|
else:
|
|
a = list(range(2, n))
|
|
a.append(1)
|
|
a.insert(0, 0)
|
|
gen2 = a
|
|
gens = [gen1, gen2]
|
|
if gen1 == gen2:
|
|
gens = gens[:1]
|
|
G = PermutationGroup([_af_new(a) for a in gens], dups=False)
|
|
|
|
set_alternating_group_properties(G, n, n)
|
|
G._is_alt = True
|
|
return G
|
|
|
|
|
|
def set_alternating_group_properties(G, n, degree):
|
|
"""Set known properties of an alternating group. """
|
|
if n < 4:
|
|
G._is_abelian = True
|
|
G._is_nilpotent = True
|
|
else:
|
|
G._is_abelian = False
|
|
G._is_nilpotent = False
|
|
if n < 5:
|
|
G._is_solvable = True
|
|
else:
|
|
G._is_solvable = False
|
|
G._degree = degree
|
|
G._is_transitive = True
|
|
G._is_dihedral = False
|
|
|
|
|
|
def CyclicGroup(n):
|
|
"""
|
|
Generates the cyclic group of order ``n`` as a permutation group.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)``
|
|
(in cycle notation). After the group is generated, some of its basic
|
|
properties are set.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.combinatorics.named_groups import CyclicGroup
|
|
>>> G = CyclicGroup(6)
|
|
>>> G.is_group
|
|
True
|
|
>>> G.order()
|
|
6
|
|
>>> list(G.generate_schreier_sims(af=True))
|
|
[[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
|
|
[3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]
|
|
|
|
See Also
|
|
========
|
|
|
|
SymmetricGroup, DihedralGroup, AlternatingGroup
|
|
|
|
"""
|
|
a = list(range(1, n))
|
|
a.append(0)
|
|
gen = _af_new(a)
|
|
G = PermutationGroup([gen])
|
|
|
|
G._is_abelian = True
|
|
G._is_nilpotent = True
|
|
G._is_solvable = True
|
|
G._degree = n
|
|
G._is_transitive = True
|
|
G._order = n
|
|
G._is_dihedral = (n == 2)
|
|
return G
|
|
|
|
|
|
def DihedralGroup(n):
|
|
r"""
|
|
Generates the dihedral group `D_n` as a permutation group.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The dihedral group `D_n` is the group of symmetries of the regular
|
|
``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)``
|
|
(a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...``
|
|
(a reflection of the ``n``-gon) in cycle rotation. It is easy to see that
|
|
these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate
|
|
`D_n` (See [1]). After the group is generated, some of its basic properties
|
|
are set.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
|
>>> G = DihedralGroup(5)
|
|
>>> G.is_group
|
|
True
|
|
>>> a = list(G.generate_dimino())
|
|
>>> [perm.cyclic_form for perm in a]
|
|
[[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
|
|
[[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
|
|
[[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
|
|
[[0, 3], [1, 2]]]
|
|
|
|
See Also
|
|
========
|
|
|
|
SymmetricGroup, CyclicGroup, AlternatingGroup
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Dihedral_group
|
|
|
|
"""
|
|
# small cases are special
|
|
if n == 1:
|
|
return PermutationGroup([Permutation([1, 0])])
|
|
if n == 2:
|
|
return PermutationGroup([Permutation([1, 0, 3, 2]),
|
|
Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])
|
|
|
|
a = list(range(1, n))
|
|
a.append(0)
|
|
gen1 = _af_new(a)
|
|
a = list(range(n))
|
|
a.reverse()
|
|
gen2 = _af_new(a)
|
|
G = PermutationGroup([gen1, gen2])
|
|
# if n is a power of 2, group is nilpotent
|
|
if n & (n-1) == 0:
|
|
G._is_nilpotent = True
|
|
else:
|
|
G._is_nilpotent = False
|
|
G._is_dihedral = True
|
|
G._is_abelian = False
|
|
G._is_solvable = True
|
|
G._degree = n
|
|
G._is_transitive = True
|
|
G._order = 2*n
|
|
return G
|
|
|
|
|
|
def SymmetricGroup(n):
|
|
"""
|
|
Generates the symmetric group on ``n`` elements as a permutation group.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
The generators taken are the ``n``-cycle
|
|
``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation).
|
|
(See [1]). After the group is generated, some of its basic properties
|
|
are set.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
|
>>> G = SymmetricGroup(4)
|
|
>>> G.is_group
|
|
True
|
|
>>> G.order()
|
|
24
|
|
>>> list(G.generate_schreier_sims(af=True))
|
|
[[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
|
|
[1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
|
|
[2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
|
|
[3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
|
|
[0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]
|
|
|
|
See Also
|
|
========
|
|
|
|
CyclicGroup, DihedralGroup, AlternatingGroup
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations
|
|
|
|
"""
|
|
if n == 1:
|
|
G = PermutationGroup([Permutation([0])])
|
|
elif n == 2:
|
|
G = PermutationGroup([Permutation([1, 0])])
|
|
else:
|
|
a = list(range(1, n))
|
|
a.append(0)
|
|
gen1 = _af_new(a)
|
|
a = list(range(n))
|
|
a[0], a[1] = a[1], a[0]
|
|
gen2 = _af_new(a)
|
|
G = PermutationGroup([gen1, gen2])
|
|
set_symmetric_group_properties(G, n, n)
|
|
G._is_sym = True
|
|
return G
|
|
|
|
|
|
def set_symmetric_group_properties(G, n, degree):
|
|
"""Set known properties of a symmetric group. """
|
|
if n < 3:
|
|
G._is_abelian = True
|
|
G._is_nilpotent = True
|
|
else:
|
|
G._is_abelian = False
|
|
G._is_nilpotent = False
|
|
if n < 5:
|
|
G._is_solvable = True
|
|
else:
|
|
G._is_solvable = False
|
|
G._degree = degree
|
|
G._is_transitive = True
|
|
G._is_dihedral = (n in [2, 3]) # cf Landau's func and Stirling's approx
|
|
|
|
|
|
def RubikGroup(n):
|
|
"""Return a group of Rubik's cube generators
|
|
|
|
>>> from sympy.combinatorics.named_groups import RubikGroup
|
|
>>> RubikGroup(2).is_group
|
|
True
|
|
"""
|
|
from sympy.combinatorics.generators import rubik
|
|
if n <= 1:
|
|
raise ValueError("Invalid cube. n has to be greater than 1")
|
|
return PermutationGroup(rubik(n))
|