228 lines
5.4 KiB
Python
228 lines
5.4 KiB
Python
"""Gosper's algorithm for hypergeometric summation. """
|
|
|
|
from sympy.core import S, Dummy, symbols
|
|
from sympy.polys import Poly, parallel_poly_from_expr, factor
|
|
from sympy.utilities.iterables import is_sequence
|
|
|
|
|
|
def gosper_normal(f, g, n, polys=True):
|
|
r"""
|
|
Compute the Gosper's normal form of ``f`` and ``g``.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Given relatively prime univariate polynomials ``f`` and ``g``,
|
|
rewrite their quotient to a normal form defined as follows:
|
|
|
|
.. math::
|
|
\frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}
|
|
|
|
where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are
|
|
monic polynomials in ``n`` with the following properties:
|
|
|
|
1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}`
|
|
2. `\gcd(B(n), C(n+1)) = 1`
|
|
3. `\gcd(A(n), C(n)) = 1`
|
|
|
|
This normal form, or rational factorization in other words, is a
|
|
crucial step in Gosper's algorithm and in solving of difference
|
|
equations. It can be also used to decide if two hypergeometric
|
|
terms are similar or not.
|
|
|
|
This procedure will return a tuple containing elements of this
|
|
factorization in the form ``(Z*A, B, C)``.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.concrete.gosper import gosper_normal
|
|
>>> from sympy.abc import n
|
|
|
|
>>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False)
|
|
(1/4, n + 3/2, n + 1/4)
|
|
|
|
"""
|
|
(p, q), opt = parallel_poly_from_expr(
|
|
(f, g), n, field=True, extension=True)
|
|
|
|
a, A = p.LC(), p.monic()
|
|
b, B = q.LC(), q.monic()
|
|
|
|
C, Z = A.one, a/b
|
|
h = Dummy('h')
|
|
|
|
D = Poly(n + h, n, h, domain=opt.domain)
|
|
|
|
R = A.resultant(B.compose(D))
|
|
roots = set(R.ground_roots().keys())
|
|
|
|
for r in set(roots):
|
|
if not r.is_Integer or r < 0:
|
|
roots.remove(r)
|
|
|
|
for i in sorted(roots):
|
|
d = A.gcd(B.shift(+i))
|
|
|
|
A = A.quo(d)
|
|
B = B.quo(d.shift(-i))
|
|
|
|
for j in range(1, i + 1):
|
|
C *= d.shift(-j)
|
|
|
|
A = A.mul_ground(Z)
|
|
|
|
if not polys:
|
|
A = A.as_expr()
|
|
B = B.as_expr()
|
|
C = C.as_expr()
|
|
|
|
return A, B, C
|
|
|
|
|
|
def gosper_term(f, n):
|
|
r"""
|
|
Compute Gosper's hypergeometric term for ``f``.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Suppose ``f`` is a hypergeometric term such that:
|
|
|
|
.. math::
|
|
s_n = \sum_{k=0}^{n-1} f_k
|
|
|
|
and `f_k` does not depend on `n`. Returns a hypergeometric
|
|
term `g_n` such that `g_{n+1} - g_n = f_n`.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.concrete.gosper import gosper_term
|
|
>>> from sympy import factorial
|
|
>>> from sympy.abc import n
|
|
|
|
>>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
|
|
(-n - 1/2)/(n + 1/4)
|
|
|
|
"""
|
|
from sympy.simplify import hypersimp
|
|
r = hypersimp(f, n)
|
|
|
|
if r is None:
|
|
return None # 'f' is *not* a hypergeometric term
|
|
|
|
p, q = r.as_numer_denom()
|
|
|
|
A, B, C = gosper_normal(p, q, n)
|
|
B = B.shift(-1)
|
|
|
|
N = S(A.degree())
|
|
M = S(B.degree())
|
|
K = S(C.degree())
|
|
|
|
if (N != M) or (A.LC() != B.LC()):
|
|
D = {K - max(N, M)}
|
|
elif not N:
|
|
D = {K - N + 1, S.Zero}
|
|
else:
|
|
D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()}
|
|
|
|
for d in set(D):
|
|
if not d.is_Integer or d < 0:
|
|
D.remove(d)
|
|
|
|
if not D:
|
|
return None # 'f(n)' is *not* Gosper-summable
|
|
|
|
d = max(D)
|
|
|
|
coeffs = symbols('c:%s' % (d + 1), cls=Dummy)
|
|
domain = A.get_domain().inject(*coeffs)
|
|
|
|
x = Poly(coeffs, n, domain=domain)
|
|
H = A*x.shift(1) - B*x - C
|
|
|
|
from sympy.solvers.solvers import solve
|
|
solution = solve(H.coeffs(), coeffs)
|
|
|
|
if solution is None:
|
|
return None # 'f(n)' is *not* Gosper-summable
|
|
|
|
x = x.as_expr().subs(solution)
|
|
|
|
for coeff in coeffs:
|
|
if coeff not in solution:
|
|
x = x.subs(coeff, 0)
|
|
|
|
if x.is_zero:
|
|
return None # 'f(n)' is *not* Gosper-summable
|
|
else:
|
|
return B.as_expr()*x/C.as_expr()
|
|
|
|
|
|
def gosper_sum(f, k):
|
|
r"""
|
|
Gosper's hypergeometric summation algorithm.
|
|
|
|
Explanation
|
|
===========
|
|
|
|
Given a hypergeometric term ``f`` such that:
|
|
|
|
.. math ::
|
|
s_n = \sum_{k=0}^{n-1} f_k
|
|
|
|
and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where
|
|
`g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed
|
|
in closed form as a sum of hypergeometric terms.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.concrete.gosper import gosper_sum
|
|
>>> from sympy import factorial
|
|
>>> from sympy.abc import n, k
|
|
|
|
>>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1)
|
|
>>> gosper_sum(f, (k, 0, n))
|
|
(-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
|
|
>>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2])
|
|
True
|
|
>>> gosper_sum(f, (k, 3, n))
|
|
(-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1))
|
|
>>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5])
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B,
|
|
AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100
|
|
|
|
"""
|
|
indefinite = False
|
|
|
|
if is_sequence(k):
|
|
k, a, b = k
|
|
else:
|
|
indefinite = True
|
|
|
|
g = gosper_term(f, k)
|
|
|
|
if g is None:
|
|
return None
|
|
|
|
if indefinite:
|
|
result = f*g
|
|
else:
|
|
result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a)
|
|
|
|
if result is S.NaN:
|
|
try:
|
|
result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a)
|
|
except NotImplementedError:
|
|
result = None
|
|
|
|
return factor(result)
|