697 lines
20 KiB
Python
697 lines
20 KiB
Python
"""
|
|
Primality testing
|
|
|
|
"""
|
|
|
|
from sympy.core.numbers import igcd
|
|
from sympy.core.power import integer_nthroot
|
|
from sympy.core.sympify import sympify
|
|
from sympy.external.gmpy import HAS_GMPY
|
|
from sympy.utilities.misc import as_int
|
|
|
|
from mpmath.libmp import bitcount as _bitlength
|
|
|
|
|
|
def _int_tuple(*i):
|
|
return tuple(int(_) for _ in i)
|
|
|
|
|
|
def is_euler_pseudoprime(n, b):
|
|
"""Returns True if n is prime or an Euler pseudoprime to base b, else False.
|
|
|
|
Euler Pseudoprime : In arithmetic, an odd composite integer n is called an
|
|
euler pseudoprime to base a, if a and n are coprime and satisfy the modular
|
|
arithmetic congruence relation :
|
|
|
|
a ^ (n-1)/2 = + 1(mod n) or
|
|
a ^ (n-1)/2 = - 1(mod n)
|
|
|
|
(where mod refers to the modulo operation).
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import is_euler_pseudoprime
|
|
>>> is_euler_pseudoprime(2, 5)
|
|
True
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
|
|
"""
|
|
from sympy.ntheory.factor_ import trailing
|
|
|
|
if not mr(n, [b]):
|
|
return False
|
|
|
|
n = as_int(n)
|
|
r = n - 1
|
|
c = pow(b, r >> trailing(r), n)
|
|
|
|
if c == 1:
|
|
return True
|
|
|
|
while True:
|
|
if c == n - 1:
|
|
return True
|
|
c = pow(c, 2, n)
|
|
if c == 1:
|
|
return False
|
|
|
|
|
|
def is_square(n, prep=True):
|
|
"""Return True if n == a * a for some integer a, else False.
|
|
If n is suspected of *not* being a square then this is a
|
|
quick method of confirming that it is not.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import is_square
|
|
>>> is_square(25)
|
|
True
|
|
>>> is_square(2)
|
|
False
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://mersenneforum.org/showpost.php?p=110896
|
|
|
|
See Also
|
|
========
|
|
sympy.core.power.integer_nthroot
|
|
"""
|
|
if prep:
|
|
n = as_int(n)
|
|
if n < 0:
|
|
return False
|
|
if n in (0, 1):
|
|
return True
|
|
# def magic(n):
|
|
# s = {x**2 % n for x in range(n)}
|
|
# return sum(1 << bit for bit in s)
|
|
# >>> print(hex(magic(128)))
|
|
# 0x2020212020202130202021202030213
|
|
# >>> print(hex(magic(99)))
|
|
# 0x209060049048220348a410213
|
|
# >>> print(hex(magic(91)))
|
|
# 0x102e403012a0c9862c14213
|
|
# >>> print(hex(magic(85)))
|
|
# 0x121065188e001c46298213
|
|
if not 0x2020212020202130202021202030213 & (1 << (n & 127)):
|
|
return False # e.g. 2, 3
|
|
m = n % (99 * 91 * 85)
|
|
if not 0x209060049048220348a410213 & (1 << (m % 99)):
|
|
return False # e.g. 17, 68
|
|
if not 0x102e403012a0c9862c14213 & (1 << (m % 91)):
|
|
return False # e.g. 97, 388
|
|
if not 0x121065188e001c46298213 & (1 << (m % 85)):
|
|
return False # e.g. 793, 1408
|
|
# n is either:
|
|
# a) odd = 4*even + 1 (and square if even = k*(k + 1))
|
|
# b) even with
|
|
# odd multiplicity of 2 --> not square, e.g. 39040
|
|
# even multiplicity of 2, e.g. 4, 16, 36, ..., 16324
|
|
# removal of factors of 2 to give an odd, and rejection if
|
|
# any(i%2 for i in divmod(odd - 1, 4))
|
|
# will give an odd number in form 4*even + 1.
|
|
# Use of `trailing` to check the power of 2 is not done since it
|
|
# does not apply to a large percentage of arbitrary numbers
|
|
# and the integer_nthroot is able to quickly resolve these cases.
|
|
return integer_nthroot(n, 2)[1]
|
|
|
|
|
|
def _test(n, base, s, t):
|
|
"""Miller-Rabin strong pseudoprime test for one base.
|
|
Return False if n is definitely composite, True if n is
|
|
probably prime, with a probability greater than 3/4.
|
|
|
|
"""
|
|
# do the Fermat test
|
|
b = pow(base, t, n)
|
|
if b == 1 or b == n - 1:
|
|
return True
|
|
else:
|
|
for j in range(1, s):
|
|
b = pow(b, 2, n)
|
|
if b == n - 1:
|
|
return True
|
|
# see I. Niven et al. "An Introduction to Theory of Numbers", page 78
|
|
if b == 1:
|
|
return False
|
|
return False
|
|
|
|
|
|
def mr(n, bases):
|
|
"""Perform a Miller-Rabin strong pseudoprime test on n using a
|
|
given list of bases/witnesses.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
|
|
A Computational Perspective", Springer, 2nd edition, 135-138
|
|
|
|
A list of thresholds and the bases they require are here:
|
|
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import mr
|
|
>>> mr(1373651, [2, 3])
|
|
False
|
|
>>> mr(479001599, [31, 73])
|
|
True
|
|
|
|
"""
|
|
from sympy.ntheory.factor_ import trailing
|
|
from sympy.polys.domains import ZZ
|
|
|
|
n = as_int(n)
|
|
if n < 2:
|
|
return False
|
|
# remove powers of 2 from n-1 (= t * 2**s)
|
|
s = trailing(n - 1)
|
|
t = n >> s
|
|
for base in bases:
|
|
# Bases >= n are wrapped, bases < 2 are invalid
|
|
if base >= n:
|
|
base %= n
|
|
if base >= 2:
|
|
base = ZZ(base)
|
|
if not _test(n, base, s, t):
|
|
return False
|
|
return True
|
|
|
|
|
|
def _lucas_sequence(n, P, Q, k):
|
|
"""Return the modular Lucas sequence (U_k, V_k, Q_k).
|
|
|
|
Given a Lucas sequence defined by P, Q, returns the kth values for
|
|
U and V, along with Q^k, all modulo n. This is intended for use with
|
|
possibly very large values of n and k, where the combinatorial functions
|
|
would be completely unusable.
|
|
|
|
The modular Lucas sequences are used in numerous places in number theory,
|
|
especially in the Lucas compositeness tests and the various n + 1 proofs.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import _lucas_sequence
|
|
>>> N = 10**2000 + 4561
|
|
>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
|
|
(0, 2, 1)
|
|
|
|
"""
|
|
D = P*P - 4*Q
|
|
if n < 2:
|
|
raise ValueError("n must be >= 2")
|
|
if k < 0:
|
|
raise ValueError("k must be >= 0")
|
|
if D == 0:
|
|
raise ValueError("D must not be zero")
|
|
|
|
if k == 0:
|
|
return _int_tuple(0, 2, Q)
|
|
U = 1
|
|
V = P
|
|
Qk = Q
|
|
b = _bitlength(k)
|
|
if Q == 1:
|
|
# Optimization for extra strong tests.
|
|
while b > 1:
|
|
U = (U*V) % n
|
|
V = (V*V - 2) % n
|
|
b -= 1
|
|
if (k >> (b - 1)) & 1:
|
|
U, V = U*P + V, V*P + U*D
|
|
if U & 1:
|
|
U += n
|
|
if V & 1:
|
|
V += n
|
|
U, V = U >> 1, V >> 1
|
|
elif P == 1 and Q == -1:
|
|
# Small optimization for 50% of Selfridge parameters.
|
|
while b > 1:
|
|
U = (U*V) % n
|
|
if Qk == 1:
|
|
V = (V*V - 2) % n
|
|
else:
|
|
V = (V*V + 2) % n
|
|
Qk = 1
|
|
b -= 1
|
|
if (k >> (b-1)) & 1:
|
|
U, V = U + V, V + U*D
|
|
if U & 1:
|
|
U += n
|
|
if V & 1:
|
|
V += n
|
|
U, V = U >> 1, V >> 1
|
|
Qk = -1
|
|
else:
|
|
# The general case with any P and Q.
|
|
while b > 1:
|
|
U = (U*V) % n
|
|
V = (V*V - 2*Qk) % n
|
|
Qk *= Qk
|
|
b -= 1
|
|
if (k >> (b - 1)) & 1:
|
|
U, V = U*P + V, V*P + U*D
|
|
if U & 1:
|
|
U += n
|
|
if V & 1:
|
|
V += n
|
|
U, V = U >> 1, V >> 1
|
|
Qk *= Q
|
|
Qk %= n
|
|
return _int_tuple(U % n, V % n, Qk)
|
|
|
|
|
|
def _lucas_selfridge_params(n):
|
|
"""Calculates the Selfridge parameters (D, P, Q) for n. This is
|
|
method A from page 1401 of Baillie and Wagstaff.
|
|
|
|
References
|
|
==========
|
|
.. [1] "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
|
|
http://mpqs.free.fr/LucasPseudoprimes.pdf
|
|
"""
|
|
from sympy.ntheory.residue_ntheory import jacobi_symbol
|
|
D = 5
|
|
while True:
|
|
g = igcd(abs(D), n)
|
|
if g > 1 and g != n:
|
|
return (0, 0, 0)
|
|
if jacobi_symbol(D, n) == -1:
|
|
break
|
|
if D > 0:
|
|
D = -D - 2
|
|
else:
|
|
D = -D + 2
|
|
return _int_tuple(D, 1, (1 - D)/4)
|
|
|
|
|
|
def _lucas_extrastrong_params(n):
|
|
"""Calculates the "extra strong" parameters (D, P, Q) for n.
|
|
|
|
References
|
|
==========
|
|
.. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes
|
|
https://oeis.org/A217719
|
|
.. [1] https://en.wikipedia.org/wiki/Lucas_pseudoprime
|
|
"""
|
|
from sympy.ntheory.residue_ntheory import jacobi_symbol
|
|
P, Q, D = 3, 1, 5
|
|
while True:
|
|
g = igcd(D, n)
|
|
if g > 1 and g != n:
|
|
return (0, 0, 0)
|
|
if jacobi_symbol(D, n) == -1:
|
|
break
|
|
P += 1
|
|
D = P*P - 4
|
|
return _int_tuple(D, P, Q)
|
|
|
|
|
|
def is_lucas_prp(n):
|
|
"""Standard Lucas compositeness test with Selfridge parameters. Returns
|
|
False if n is definitely composite, and True if n is a Lucas probable
|
|
prime.
|
|
|
|
This is typically used in combination with the Miller-Rabin test.
|
|
|
|
References
|
|
==========
|
|
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
|
|
http://mpqs.free.fr/LucasPseudoprimes.pdf
|
|
- OEIS A217120: Lucas Pseudoprimes
|
|
https://oeis.org/A217120
|
|
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp
|
|
>>> for i in range(10000):
|
|
... if is_lucas_prp(i) and not isprime(i):
|
|
... print(i)
|
|
323
|
|
377
|
|
1159
|
|
1829
|
|
3827
|
|
5459
|
|
5777
|
|
9071
|
|
9179
|
|
"""
|
|
n = as_int(n)
|
|
if n == 2:
|
|
return True
|
|
if n < 2 or (n % 2) == 0:
|
|
return False
|
|
if is_square(n, False):
|
|
return False
|
|
|
|
D, P, Q = _lucas_selfridge_params(n)
|
|
if D == 0:
|
|
return False
|
|
U, V, Qk = _lucas_sequence(n, P, Q, n+1)
|
|
return U == 0
|
|
|
|
|
|
def is_strong_lucas_prp(n):
|
|
"""Strong Lucas compositeness test with Selfridge parameters. Returns
|
|
False if n is definitely composite, and True if n is a strong Lucas
|
|
probable prime.
|
|
|
|
This is often used in combination with the Miller-Rabin test, and
|
|
in particular, when combined with M-R base 2 creates the strong BPSW test.
|
|
|
|
References
|
|
==========
|
|
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
|
|
http://mpqs.free.fr/LucasPseudoprimes.pdf
|
|
- OEIS A217255: Strong Lucas Pseudoprimes
|
|
https://oeis.org/A217255
|
|
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
|
|
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
|
|
>>> for i in range(20000):
|
|
... if is_strong_lucas_prp(i) and not isprime(i):
|
|
... print(i)
|
|
5459
|
|
5777
|
|
10877
|
|
16109
|
|
18971
|
|
"""
|
|
from sympy.ntheory.factor_ import trailing
|
|
n = as_int(n)
|
|
if n == 2:
|
|
return True
|
|
if n < 2 or (n % 2) == 0:
|
|
return False
|
|
if is_square(n, False):
|
|
return False
|
|
|
|
D, P, Q = _lucas_selfridge_params(n)
|
|
if D == 0:
|
|
return False
|
|
|
|
# remove powers of 2 from n+1 (= k * 2**s)
|
|
s = trailing(n + 1)
|
|
k = (n+1) >> s
|
|
|
|
U, V, Qk = _lucas_sequence(n, P, Q, k)
|
|
|
|
if U == 0 or V == 0:
|
|
return True
|
|
for r in range(1, s):
|
|
V = (V*V - 2*Qk) % n
|
|
if V == 0:
|
|
return True
|
|
Qk = pow(Qk, 2, n)
|
|
return False
|
|
|
|
|
|
def is_extra_strong_lucas_prp(n):
|
|
"""Extra Strong Lucas compositeness test. Returns False if n is
|
|
definitely composite, and True if n is a "extra strong" Lucas probable
|
|
prime.
|
|
|
|
The parameters are selected using P = 3, Q = 1, then incrementing P until
|
|
(D|n) == -1. The test itself is as defined in Grantham 2000, from the
|
|
Mo and Jones preprint. The parameter selection and test are the same as
|
|
used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
|
|
page on Wikipedia.
|
|
|
|
With these parameters, there are no counterexamples below 2^64 nor any
|
|
known above that range. It is 20-50% faster than the strong test.
|
|
|
|
Because of the different parameters selected, there is no relationship
|
|
between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
|
|
In particular, one is not a subset of the other.
|
|
|
|
References
|
|
==========
|
|
- "Frobenius Pseudoprimes", Jon Grantham, 2000.
|
|
https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/
|
|
- OEIS A217719: Extra Strong Lucas Pseudoprimes
|
|
https://oeis.org/A217719
|
|
- https://en.wikipedia.org/wiki/Lucas_pseudoprime
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
|
|
>>> for i in range(20000):
|
|
... if is_extra_strong_lucas_prp(i) and not isprime(i):
|
|
... print(i)
|
|
989
|
|
3239
|
|
5777
|
|
10877
|
|
"""
|
|
# Implementation notes:
|
|
# 1) the parameters differ from Thomas R. Nicely's. His parameter
|
|
# selection leads to pseudoprimes that overlap M-R tests, and
|
|
# contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
|
|
# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
|
|
# sequence must have Q=1. See Grantham theorem 2.3, any of the
|
|
# references on the MathWorld page, or run it and see Q=-1 is wrong.
|
|
from sympy.ntheory.factor_ import trailing
|
|
n = as_int(n)
|
|
if n == 2:
|
|
return True
|
|
if n < 2 or (n % 2) == 0:
|
|
return False
|
|
if is_square(n, False):
|
|
return False
|
|
|
|
D, P, Q = _lucas_extrastrong_params(n)
|
|
if D == 0:
|
|
return False
|
|
|
|
# remove powers of 2 from n+1 (= k * 2**s)
|
|
s = trailing(n + 1)
|
|
k = (n+1) >> s
|
|
|
|
U, V, Qk = _lucas_sequence(n, P, Q, k)
|
|
|
|
if U == 0 and (V == 2 or V == n - 2):
|
|
return True
|
|
for r in range(1, s):
|
|
if V == 0:
|
|
return True
|
|
V = (V*V - 2) % n
|
|
return False
|
|
|
|
|
|
def isprime(n):
|
|
"""
|
|
Test if n is a prime number (True) or not (False). For n < 2^64 the
|
|
answer is definitive; larger n values have a small probability of actually
|
|
being pseudoprimes.
|
|
|
|
Negative numbers (e.g. -2) are not considered prime.
|
|
|
|
The first step is looking for trivial factors, which if found enables
|
|
a quick return. Next, if the sieve is large enough, use bisection search
|
|
on the sieve. For small numbers, a set of deterministic Miller-Rabin
|
|
tests are performed with bases that are known to have no counterexamples
|
|
in their range. Finally if the number is larger than 2^64, a strong
|
|
BPSW test is performed. While this is a probable prime test and we
|
|
believe counterexamples exist, there are no known counterexamples.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.ntheory import isprime
|
|
>>> isprime(13)
|
|
True
|
|
>>> isprime(13.0) # limited precision
|
|
False
|
|
>>> isprime(15)
|
|
False
|
|
|
|
Notes
|
|
=====
|
|
|
|
This routine is intended only for integer input, not numerical
|
|
expressions which may represent numbers. Floats are also
|
|
rejected as input because they represent numbers of limited
|
|
precision. While it is tempting to permit 7.0 to represent an
|
|
integer there are errors that may "pass silently" if this is
|
|
allowed:
|
|
|
|
>>> from sympy import Float, S
|
|
>>> int(1e3) == 1e3 == 10**3
|
|
True
|
|
>>> int(1e23) == 1e23
|
|
True
|
|
>>> int(1e23) == 10**23
|
|
False
|
|
|
|
>>> near_int = 1 + S(1)/10**19
|
|
>>> near_int == int(near_int)
|
|
False
|
|
>>> n = Float(near_int, 10) # truncated by precision
|
|
>>> n == int(n)
|
|
True
|
|
>>> n = Float(near_int, 20)
|
|
>>> n == int(n)
|
|
False
|
|
|
|
See Also
|
|
========
|
|
|
|
sympy.ntheory.generate.primerange : Generates all primes in a given range
|
|
sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n
|
|
sympy.ntheory.generate.prime : Return the nth prime
|
|
|
|
References
|
|
==========
|
|
- https://en.wikipedia.org/wiki/Strong_pseudoprime
|
|
- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
|
|
http://mpqs.free.fr/LucasPseudoprimes.pdf
|
|
- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
|
|
"""
|
|
try:
|
|
n = as_int(n)
|
|
except ValueError:
|
|
return False
|
|
|
|
# Step 1, do quick composite testing via trial division. The individual
|
|
# modulo tests benchmark faster than one or two primorial igcds for me.
|
|
# The point here is just to speedily handle small numbers and many
|
|
# composites. Step 2 only requires that n <= 2 get handled here.
|
|
if n in [2, 3, 5]:
|
|
return True
|
|
if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
|
|
return False
|
|
if n < 49:
|
|
return True
|
|
if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
|
|
(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
|
|
(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
|
|
return False
|
|
if n < 2809:
|
|
return True
|
|
if n < 31417:
|
|
return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951, 23377]
|
|
|
|
# bisection search on the sieve if the sieve is large enough
|
|
from sympy.ntheory.generate import sieve as s
|
|
if n <= s._list[-1]:
|
|
l, u = s.search(n)
|
|
return l == u
|
|
|
|
# If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
|
|
# This should be a bit faster than our step 2, and for large values will
|
|
# be a lot faster than our step 3 (C+GMP vs. Python).
|
|
if HAS_GMPY == 2:
|
|
from gmpy2 import is_strong_prp, is_strong_selfridge_prp
|
|
return is_strong_prp(n, 2) and is_strong_selfridge_prp(n)
|
|
|
|
|
|
# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
|
|
# https://miller-rabin.appspot.com/
|
|
# for lists. We have made sure the M-R routine will successfully handle
|
|
# bases larger than n, so we can use the minimal set.
|
|
# In September 2015 deterministic numbers were extended to over 2^81.
|
|
# https://arxiv.org/pdf/1509.00864.pdf
|
|
# https://oeis.org/A014233
|
|
if n < 341531:
|
|
return mr(n, [9345883071009581737])
|
|
if n < 885594169:
|
|
return mr(n, [725270293939359937, 3569819667048198375])
|
|
if n < 350269456337:
|
|
return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
|
|
if n < 55245642489451:
|
|
return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
|
|
if n < 7999252175582851:
|
|
return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
|
|
if n < 585226005592931977:
|
|
return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
|
|
if n < 18446744073709551616:
|
|
return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
|
|
if n < 318665857834031151167461:
|
|
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
|
|
if n < 3317044064679887385961981:
|
|
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41])
|
|
|
|
# We could do this instead at any point:
|
|
#if n < 18446744073709551616:
|
|
# return mr(n, [2]) and is_extra_strong_lucas_prp(n)
|
|
|
|
# Here are tests that are safe for MR routines that don't understand
|
|
# large bases.
|
|
#if n < 9080191:
|
|
# return mr(n, [31, 73])
|
|
#if n < 19471033:
|
|
# return mr(n, [2, 299417])
|
|
#if n < 38010307:
|
|
# return mr(n, [2, 9332593])
|
|
#if n < 316349281:
|
|
# return mr(n, [11000544, 31481107])
|
|
#if n < 4759123141:
|
|
# return mr(n, [2, 7, 61])
|
|
#if n < 105936894253:
|
|
# return mr(n, [2, 1005905886, 1340600841])
|
|
#if n < 31858317218647:
|
|
# return mr(n, [2, 642735, 553174392, 3046413974])
|
|
#if n < 3071837692357849:
|
|
# return mr(n, [2, 75088, 642735, 203659041, 3613982119])
|
|
#if n < 18446744073709551616:
|
|
# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
|
|
|
|
# Step 3: BPSW.
|
|
#
|
|
# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
|
|
# 44.0s old isprime using 46 bases
|
|
# 5.3s strong BPSW + one random base
|
|
# 4.3s extra strong BPSW + one random base
|
|
# 4.1s strong BPSW
|
|
# 3.2s extra strong BPSW
|
|
|
|
# Classic BPSW from page 1401 of the paper. See alternate ideas below.
|
|
return mr(n, [2]) and is_strong_lucas_prp(n)
|
|
|
|
# Using extra strong test, which is somewhat faster
|
|
#return mr(n, [2]) and is_extra_strong_lucas_prp(n)
|
|
|
|
# Add a random M-R base
|
|
#import random
|
|
#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
|
|
|
|
|
|
def is_gaussian_prime(num):
|
|
r"""Test if num is a Gaussian prime number.
|
|
|
|
References
|
|
==========
|
|
|
|
.. [1] https://oeis.org/wiki/Gaussian_primes
|
|
"""
|
|
|
|
num = sympify(num)
|
|
a, b = num.as_real_imag()
|
|
a = as_int(a, strict=False)
|
|
b = as_int(b, strict=False)
|
|
if a == 0:
|
|
b = abs(b)
|
|
return isprime(b) and b % 4 == 3
|
|
elif b == 0:
|
|
a = abs(a)
|
|
return isprime(a) and a % 4 == 3
|
|
return isprime(a**2 + b**2)
|