73 lines
1.9 KiB
Python
73 lines
1.9 KiB
Python
"""1D quantum particle in a box."""
|
|
|
|
from sympy.core.numbers import pi
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import Symbol
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import sin
|
|
from sympy.sets.sets import Interval
|
|
|
|
from sympy.physics.quantum.operator import HermitianOperator
|
|
from sympy.physics.quantum.state import Ket, Bra
|
|
from sympy.physics.quantum.constants import hbar
|
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
|
from sympy.physics.quantum.hilbert import L2
|
|
|
|
m = Symbol('m')
|
|
L = Symbol('L')
|
|
|
|
|
|
__all__ = [
|
|
'PIABHamiltonian',
|
|
'PIABKet',
|
|
'PIABBra'
|
|
]
|
|
|
|
|
|
class PIABHamiltonian(HermitianOperator):
|
|
"""Particle in a box Hamiltonian operator."""
|
|
|
|
@classmethod
|
|
def _eval_hilbert_space(cls, label):
|
|
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
|
|
|
def _apply_operator_PIABKet(self, ket, **options):
|
|
n = ket.label[0]
|
|
return (n**2*pi**2*hbar**2)/(2*m*L**2)*ket
|
|
|
|
|
|
class PIABKet(Ket):
|
|
"""Particle in a box eigenket."""
|
|
|
|
@classmethod
|
|
def _eval_hilbert_space(cls, args):
|
|
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
|
|
|
@classmethod
|
|
def dual_class(self):
|
|
return PIABBra
|
|
|
|
def _represent_default_basis(self, **options):
|
|
return self._represent_XOp(None, **options)
|
|
|
|
def _represent_XOp(self, basis, **options):
|
|
x = Symbol('x')
|
|
n = Symbol('n')
|
|
subs_info = options.get('subs', {})
|
|
return sqrt(2/L)*sin(n*pi*x/L).subs(subs_info)
|
|
|
|
def _eval_innerproduct_PIABBra(self, bra):
|
|
return KroneckerDelta(bra.label[0], self.label[0])
|
|
|
|
|
|
class PIABBra(Bra):
|
|
"""Particle in a box eigenbra."""
|
|
|
|
@classmethod
|
|
def _eval_hilbert_space(cls, label):
|
|
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
|
|
|
@classmethod
|
|
def dual_class(self):
|
|
return PIABKet
|