204 lines
7.9 KiB
Python
204 lines
7.9 KiB
Python
from sympy.core.function import (Derivative, Function)
|
|
from sympy.core.numbers import (I, Rational, oo, pi)
|
|
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
|
|
from sympy.core.symbol import (Symbol, symbols)
|
|
from sympy.functions.elementary.complexes import (Abs, conjugate)
|
|
from sympy.functions.elementary.exponential import (exp, log)
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.functions.elementary.trigonometric import sin
|
|
from sympy.integrals.integrals import Integral
|
|
from sympy.matrices.dense import Matrix
|
|
from sympy.series.limits import limit
|
|
|
|
from sympy.printing.python import python
|
|
|
|
from sympy.testing.pytest import raises, XFAIL
|
|
|
|
x, y = symbols('x,y')
|
|
th = Symbol('theta')
|
|
ph = Symbol('phi')
|
|
|
|
|
|
def test_python_basic():
|
|
# Simple numbers/symbols
|
|
assert python(-Rational(1)/2) == "e = Rational(-1, 2)"
|
|
assert python(-Rational(13)/22) == "e = Rational(-13, 22)"
|
|
assert python(oo) == "e = oo"
|
|
|
|
# Powers
|
|
assert python(x**2) == "x = Symbol(\'x\')\ne = x**2"
|
|
assert python(1/x) == "x = Symbol('x')\ne = 1/x"
|
|
assert python(y*x**-2) == "y = Symbol('y')\nx = Symbol('x')\ne = y/x**2"
|
|
assert python(
|
|
x**Rational(-5, 2)) == "x = Symbol('x')\ne = x**Rational(-5, 2)"
|
|
|
|
# Sums of terms
|
|
assert python(x**2 + x + 1) in [
|
|
"x = Symbol('x')\ne = 1 + x + x**2",
|
|
"x = Symbol('x')\ne = x + x**2 + 1",
|
|
"x = Symbol('x')\ne = x**2 + x + 1", ]
|
|
assert python(1 - x) in [
|
|
"x = Symbol('x')\ne = 1 - x",
|
|
"x = Symbol('x')\ne = -x + 1"]
|
|
assert python(1 - 2*x) in [
|
|
"x = Symbol('x')\ne = 1 - 2*x",
|
|
"x = Symbol('x')\ne = -2*x + 1"]
|
|
assert python(1 - Rational(3, 2)*y/x) in [
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3/2*y/x",
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = -3/2*y/x + 1",
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3*y/(2*x)"]
|
|
|
|
# Multiplication
|
|
assert python(x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = x/y"
|
|
assert python(-x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = -x/y"
|
|
assert python((x + 2)/y) in [
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(2 + x)",
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(x + 2)",
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = 1/y*(2 + x)",
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = (2 + x)/y",
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = (x + 2)/y"]
|
|
assert python((1 + x)*y) in [
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = y*(1 + x)",
|
|
"y = Symbol('y')\nx = Symbol('x')\ne = y*(x + 1)", ]
|
|
|
|
# Check for proper placement of negative sign
|
|
assert python(-5*x/(x + 10)) == "x = Symbol('x')\ne = -5*x/(x + 10)"
|
|
assert python(1 - Rational(3, 2)*(x + 1)) in [
|
|
"x = Symbol('x')\ne = Rational(-3, 2)*x + Rational(-1, 2)",
|
|
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)",
|
|
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)"
|
|
]
|
|
|
|
|
|
def test_python_keyword_symbol_name_escaping():
|
|
# Check for escaping of keywords
|
|
assert python(
|
|
5*Symbol("lambda")) == "lambda_ = Symbol('lambda')\ne = 5*lambda_"
|
|
assert (python(5*Symbol("lambda") + 7*Symbol("lambda_")) ==
|
|
"lambda__ = Symbol('lambda')\nlambda_ = Symbol('lambda_')\ne = 7*lambda_ + 5*lambda__")
|
|
assert (python(5*Symbol("for") + Function("for_")(8)) ==
|
|
"for__ = Symbol('for')\nfor_ = Function('for_')\ne = 5*for__ + for_(8)")
|
|
|
|
|
|
def test_python_keyword_function_name_escaping():
|
|
assert python(
|
|
5*Function("for")(8)) == "for_ = Function('for')\ne = 5*for_(8)"
|
|
|
|
|
|
def test_python_relational():
|
|
assert python(Eq(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = Eq(x, y)"
|
|
assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y"
|
|
assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y"
|
|
assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y"
|
|
assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y"
|
|
assert python(Ne(x/(y + 1), y**2)) in [
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(1 + y), y**2)",
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(y + 1), y**2)"]
|
|
|
|
|
|
def test_python_functions():
|
|
# Simple
|
|
assert python(2*x + exp(x)) in "x = Symbol('x')\ne = 2*x + exp(x)"
|
|
assert python(sqrt(2)) == 'e = sqrt(2)'
|
|
assert python(2**Rational(1, 3)) == 'e = 2**Rational(1, 3)'
|
|
assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)'
|
|
assert python((2 + pi)**Rational(1, 3)) == 'e = (2 + pi)**Rational(1, 3)'
|
|
assert python(2**Rational(1, 4)) == 'e = 2**Rational(1, 4)'
|
|
assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)"
|
|
assert python(
|
|
Abs(x/(x**2 + 1))) in ["x = Symbol('x')\ne = Abs(x/(1 + x**2))",
|
|
"x = Symbol('x')\ne = Abs(x/(x**2 + 1))"]
|
|
|
|
# Univariate/Multivariate functions
|
|
f = Function('f')
|
|
assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)"
|
|
assert python(f(x, y)) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)"
|
|
assert python(f(x/(y + 1), y)) in [
|
|
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)",
|
|
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"]
|
|
|
|
# Nesting of square roots
|
|
assert python(sqrt((sqrt(x + 1)) + 1)) in [
|
|
"x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))",
|
|
"x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"]
|
|
|
|
# Nesting of powers
|
|
assert python((((x + 1)**Rational(1, 3)) + 1)**Rational(1, 3)) in [
|
|
"x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)",
|
|
"x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"]
|
|
|
|
# Function powers
|
|
assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2"
|
|
|
|
|
|
@XFAIL
|
|
def test_python_functions_conjugates():
|
|
a, b = map(Symbol, 'ab')
|
|
assert python( conjugate(a + b*I) ) == '_ _\na - I*b'
|
|
assert python( conjugate(exp(a + b*I)) ) == ' _ _\n a - I*b\ne '
|
|
|
|
|
|
def test_python_derivatives():
|
|
# Simple
|
|
f_1 = Derivative(log(x), x, evaluate=False)
|
|
assert python(f_1) == "x = Symbol('x')\ne = Derivative(log(x), x)"
|
|
|
|
f_2 = Derivative(log(x), x, evaluate=False) + x
|
|
assert python(f_2) == "x = Symbol('x')\ne = x + Derivative(log(x), x)"
|
|
|
|
# Multiple symbols
|
|
f_3 = Derivative(log(x) + x**2, x, y, evaluate=False)
|
|
assert python(f_3) == \
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(x**2 + log(x), x, y)"
|
|
|
|
f_4 = Derivative(2*x*y, y, x, evaluate=False) + x**2
|
|
assert python(f_4) in [
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = x**2 + Derivative(2*x*y, y, x)",
|
|
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(2*x*y, y, x) + x**2"]
|
|
|
|
|
|
def test_python_integrals():
|
|
# Simple
|
|
f_1 = Integral(log(x), x)
|
|
assert python(f_1) == "x = Symbol('x')\ne = Integral(log(x), x)"
|
|
|
|
f_2 = Integral(x**2, x)
|
|
assert python(f_2) == "x = Symbol('x')\ne = Integral(x**2, x)"
|
|
|
|
# Double nesting of pow
|
|
f_3 = Integral(x**(2**x), x)
|
|
assert python(f_3) == "x = Symbol('x')\ne = Integral(x**(2**x), x)"
|
|
|
|
# Definite integrals
|
|
f_4 = Integral(x**2, (x, 1, 2))
|
|
assert python(f_4) == "x = Symbol('x')\ne = Integral(x**2, (x, 1, 2))"
|
|
|
|
f_5 = Integral(x**2, (x, Rational(1, 2), 10))
|
|
assert python(
|
|
f_5) == "x = Symbol('x')\ne = Integral(x**2, (x, Rational(1, 2), 10))"
|
|
|
|
# Nested integrals
|
|
f_6 = Integral(x**2*y**2, x, y)
|
|
assert python(f_6) == "x = Symbol('x')\ny = Symbol('y')\ne = Integral(x**2*y**2, x, y)"
|
|
|
|
|
|
def test_python_matrix():
|
|
p = python(Matrix([[x**2+1, 1], [y, x+y]]))
|
|
s = "x = Symbol('x')\ny = Symbol('y')\ne = MutableDenseMatrix([[x**2 + 1, 1], [y, x + y]])"
|
|
assert p == s
|
|
|
|
def test_python_limits():
|
|
assert python(limit(x, x, oo)) == 'e = oo'
|
|
assert python(limit(x**2, x, 0)) == 'e = 0'
|
|
|
|
def test_issue_20762():
|
|
# Make sure Python removes curly braces from subscripted variables
|
|
a_b = Symbol('a_{b}')
|
|
b = Symbol('b')
|
|
expr = a_b*b
|
|
assert python(expr) == "a_b = Symbol('a_{b}')\nb = Symbol('b')\ne = a_b*b"
|
|
|
|
|
|
def test_settings():
|
|
raises(TypeError, lambda: python(x, method="garbage"))
|