507 lines
16 KiB
Python
507 lines
16 KiB
Python
from sympy.core.numbers import Rational
|
|
from sympy.core.singleton import S
|
|
from sympy.core.symbol import symbols
|
|
from sympy.functions.elementary.complexes import sign
|
|
from sympy.functions.elementary.miscellaneous import sqrt
|
|
from sympy.polys.polytools import gcd
|
|
from sympy.sets.sets import Complement
|
|
from sympy.core import Basic, Tuple, diff, expand, Eq, Integer
|
|
from sympy.core.sorting import ordered
|
|
from sympy.core.symbol import _symbol
|
|
from sympy.solvers import solveset, nonlinsolve, diophantine
|
|
from sympy.polys import total_degree
|
|
from sympy.geometry import Point
|
|
from sympy.ntheory.factor_ import core
|
|
|
|
|
|
class ImplicitRegion(Basic):
|
|
"""
|
|
Represents an implicit region in space.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Eq
|
|
>>> from sympy.abc import x, y, z, t
|
|
>>> from sympy.vector import ImplicitRegion
|
|
|
|
>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
|
|
ImplicitRegion((x, y), x**2 + y**2 - 4)
|
|
>>> ImplicitRegion((x, y), Eq(y*x, 1))
|
|
ImplicitRegion((x, y), x*y - 1)
|
|
|
|
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
|
|
>>> parabola.degree
|
|
2
|
|
>>> parabola.equation
|
|
-4*x + y**2
|
|
>>> parabola.rational_parametrization(t)
|
|
(4/t**2, 4/t)
|
|
|
|
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
|
|
>>> r.variables
|
|
(x, y, z)
|
|
>>> r.singular_points()
|
|
EmptySet
|
|
>>> r.regular_point()
|
|
(-10, -10, 200)
|
|
|
|
Parameters
|
|
==========
|
|
|
|
variables : tuple to map variables in implicit equation to base scalars.
|
|
|
|
equation : An expression or Eq denoting the implicit equation of the region.
|
|
|
|
"""
|
|
def __new__(cls, variables, equation):
|
|
if not isinstance(variables, Tuple):
|
|
variables = Tuple(*variables)
|
|
|
|
if isinstance(equation, Eq):
|
|
equation = equation.lhs - equation.rhs
|
|
|
|
return super().__new__(cls, variables, equation)
|
|
|
|
@property
|
|
def variables(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def equation(self):
|
|
return self.args[1]
|
|
|
|
@property
|
|
def degree(self):
|
|
return total_degree(self.equation)
|
|
|
|
def regular_point(self):
|
|
"""
|
|
Returns a point on the implicit region.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y, z
|
|
>>> from sympy.vector import ImplicitRegion
|
|
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
|
|
>>> circle.regular_point()
|
|
(-2, -1)
|
|
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
|
|
>>> parabola.regular_point()
|
|
(0, 0)
|
|
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
|
|
>>> r.regular_point()
|
|
(-10, -10, 20)
|
|
|
|
References
|
|
==========
|
|
|
|
- Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz,
|
|
J. Kepler Universitat Linz, 1996. Available:
|
|
https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf
|
|
|
|
"""
|
|
equation = self.equation
|
|
|
|
if len(self.variables) == 1:
|
|
return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],)
|
|
elif len(self.variables) == 2:
|
|
|
|
if self.degree == 2:
|
|
coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation)
|
|
|
|
if b**2 == 4*a*c:
|
|
x_reg, y_reg = self._regular_point_parabola(*coeffs)
|
|
else:
|
|
x_reg, y_reg = self._regular_point_ellipse(*coeffs)
|
|
return x_reg, y_reg
|
|
|
|
if len(self.variables) == 3:
|
|
x, y, z = self.variables
|
|
|
|
for x_reg in range(-10, 10):
|
|
for y_reg in range(-10, 10):
|
|
if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty:
|
|
return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0])
|
|
|
|
if len(self.singular_points()) != 0:
|
|
return list[self.singular_points()][0]
|
|
|
|
raise NotImplementedError()
|
|
|
|
def _regular_point_parabola(self, a, b, c, d, e, f):
|
|
ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0)
|
|
|
|
if not ok:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
if a != 0:
|
|
d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2)
|
|
if d_dash != 0:
|
|
y_reg = -f_dash/d_dash
|
|
x_reg = -(d + b*y_reg)/(2*a)
|
|
else:
|
|
ok = False
|
|
elif c != 0:
|
|
d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2)
|
|
if d_dash != 0:
|
|
x_reg = -f_dash/d_dash
|
|
y_reg = -(e + b*x_reg)/(2*c)
|
|
else:
|
|
ok = False
|
|
|
|
if ok:
|
|
return x_reg, y_reg
|
|
else:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
def _regular_point_ellipse(self, a, b, c, d, e, f):
|
|
D = 4*a*c - b**2
|
|
ok = D
|
|
|
|
if not ok:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
if a == 0 and c == 0:
|
|
K = -1
|
|
L = 4*(d*e - b*f)
|
|
elif c != 0:
|
|
K = D
|
|
L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f
|
|
else:
|
|
K = D
|
|
L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f
|
|
|
|
ok = L != 0 and not(K > 0 and L < 0)
|
|
if not ok:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
K = Rational(K).limit_denominator(10**12)
|
|
L = Rational(L).limit_denominator(10**12)
|
|
|
|
k1, k2 = K.p, K.q
|
|
l1, l2 = L.p, L.q
|
|
g = gcd(k2, l2)
|
|
|
|
a1 = (l2*k2)/g
|
|
b1 = (k1*l2)/g
|
|
c1 = -(l1*k2)/g
|
|
a2 = sign(a1)*core(abs(a1), 2)
|
|
r1 = sqrt(a1/a2)
|
|
b2 = sign(b1)*core(abs(b1), 2)
|
|
r2 = sqrt(b1/b2)
|
|
c2 = sign(c1)*core(abs(c1), 2)
|
|
r3 = sqrt(c1/c2)
|
|
|
|
g = gcd(gcd(a2, b2), c2)
|
|
a2 = a2/g
|
|
b2 = b2/g
|
|
c2 = c2/g
|
|
|
|
g1 = gcd(a2, b2)
|
|
a2 = a2/g1
|
|
b2 = b2/g1
|
|
c2 = c2*g1
|
|
|
|
g2 = gcd(a2,c2)
|
|
a2 = a2/g2
|
|
b2 = b2*g2
|
|
c2 = c2/g2
|
|
|
|
g3 = gcd(b2, c2)
|
|
a2 = a2*g3
|
|
b2 = b2/g3
|
|
c2 = c2/g3
|
|
|
|
x, y, z = symbols("x y z")
|
|
eq = a2*x**2 + b2*y**2 + c2*z**2
|
|
|
|
solutions = diophantine(eq)
|
|
|
|
if len(solutions) == 0:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
flag = False
|
|
for sol in solutions:
|
|
syms = Tuple(*sol).free_symbols
|
|
rep = {s: 3 for s in syms}
|
|
sol_z = sol[2]
|
|
|
|
if sol_z == 0:
|
|
flag = True
|
|
continue
|
|
|
|
if not isinstance(sol_z, (int, Integer)):
|
|
syms_z = sol_z.free_symbols
|
|
|
|
if len(syms_z) == 1:
|
|
p = next(iter(syms_z))
|
|
p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers))
|
|
rep[p] = next(iter(p_values))
|
|
|
|
if len(syms_z) == 2:
|
|
p, q = list(ordered(syms_z))
|
|
|
|
for i in S.Integers:
|
|
subs_sol_z = sol_z.subs(p, i)
|
|
q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers))
|
|
|
|
if not q_values.is_empty:
|
|
rep[p] = i
|
|
rep[q] = next(iter(q_values))
|
|
break
|
|
|
|
if len(syms) != 0:
|
|
x, y, z = tuple(s.subs(rep) for s in sol)
|
|
else:
|
|
x, y, z = sol
|
|
flag = False
|
|
break
|
|
|
|
if flag:
|
|
raise ValueError("Rational Point on the conic does not exist")
|
|
|
|
x = (x*g3)/r1
|
|
y = (y*g2)/r2
|
|
z = (z*g1)/r3
|
|
x = x/z
|
|
y = y/z
|
|
|
|
if a == 0 and c == 0:
|
|
x_reg = (x + y - 2*e)/(2*b)
|
|
y_reg = (x - y - 2*d)/(2*b)
|
|
elif c != 0:
|
|
x_reg = (x - 2*d*c + b*e)/K
|
|
y_reg = (y - b*x_reg - e)/(2*c)
|
|
else:
|
|
y_reg = (x - 2*e*a + b*d)/K
|
|
x_reg = (y - b*y_reg - d)/(2*a)
|
|
|
|
return x_reg, y_reg
|
|
|
|
def singular_points(self):
|
|
"""
|
|
Returns a set of singular points of the region.
|
|
|
|
The singular points are those points on the region
|
|
where all partial derivatives vanish.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y
|
|
>>> from sympy.vector import ImplicitRegion
|
|
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
|
|
>>> I.singular_points()
|
|
{(1, 1)}
|
|
|
|
"""
|
|
eq_list = [self.equation]
|
|
for var in self.variables:
|
|
eq_list += [diff(self.equation, var)]
|
|
|
|
return nonlinsolve(eq_list, list(self.variables))
|
|
|
|
def multiplicity(self, point):
|
|
"""
|
|
Returns the multiplicity of a singular point on the region.
|
|
|
|
A singular point (x,y) of region is said to be of multiplicity m
|
|
if all the partial derivatives off to order m - 1 vanish there.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import x, y, z
|
|
>>> from sympy.vector import ImplicitRegion
|
|
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
|
|
>>> I.singular_points()
|
|
{(0, 0, 0)}
|
|
>>> I.multiplicity((0, 0, 0))
|
|
2
|
|
|
|
"""
|
|
if isinstance(point, Point):
|
|
point = point.args
|
|
|
|
modified_eq = self.equation
|
|
|
|
for i, var in enumerate(self.variables):
|
|
modified_eq = modified_eq.subs(var, var + point[i])
|
|
modified_eq = expand(modified_eq)
|
|
|
|
if len(modified_eq.args) != 0:
|
|
terms = modified_eq.args
|
|
m = min([total_degree(term) for term in terms])
|
|
else:
|
|
terms = modified_eq
|
|
m = total_degree(terms)
|
|
|
|
return m
|
|
|
|
def rational_parametrization(self, parameters=('t', 's'), reg_point=None):
|
|
"""
|
|
Returns the rational parametrization of implicit region.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import Eq
|
|
>>> from sympy.abc import x, y, z, s, t
|
|
>>> from sympy.vector import ImplicitRegion
|
|
|
|
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
|
|
>>> parabola.rational_parametrization()
|
|
(4/t**2, 4/t)
|
|
|
|
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
|
|
>>> circle.rational_parametrization()
|
|
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
|
|
|
|
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
|
|
>>> I.rational_parametrization()
|
|
(t**2 - 1, t*(t**2 - 1))
|
|
|
|
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
|
|
>>> cubic_curve.rational_parametrization(parameters=(t))
|
|
(t**2 - 1, t*(t**2 - 1))
|
|
|
|
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
|
|
>>> sphere.rational_parametrization(parameters=(t, s))
|
|
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))
|
|
|
|
For some conics, regular_points() is unable to find a point on curve.
|
|
To calulcate the parametric representation in such cases, user need
|
|
to determine a point on the region and pass it using reg_point.
|
|
|
|
>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
|
|
>>> c.rational_parametrization(reg_point=(3/4, 0))
|
|
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
|
|
|
|
References
|
|
==========
|
|
|
|
- Christoph M. Hoffmann, "Conversion Methods between Parametric and
|
|
Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available:
|
|
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech
|
|
|
|
"""
|
|
equation = self.equation
|
|
degree = self.degree
|
|
|
|
if degree == 1:
|
|
if len(self.variables) == 1:
|
|
return (equation,)
|
|
elif len(self.variables) == 2:
|
|
x, y = self.variables
|
|
y_par = list(solveset(equation, y))[0]
|
|
return x, y_par
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
point = ()
|
|
|
|
# Finding the (n - 1) fold point of the monoid of degree
|
|
if degree == 2:
|
|
# For degree 2 curves, either a regular point or a singular point can be used.
|
|
if reg_point is not None:
|
|
# Using point provided by the user as regular point
|
|
point = reg_point
|
|
else:
|
|
if len(self.singular_points()) != 0:
|
|
point = list(self.singular_points())[0]
|
|
else:
|
|
point = self.regular_point()
|
|
|
|
if len(self.singular_points()) != 0:
|
|
singular_points = self.singular_points()
|
|
for spoint in singular_points:
|
|
syms = Tuple(*spoint).free_symbols
|
|
rep = {s: 2 for s in syms}
|
|
|
|
if len(syms) != 0:
|
|
spoint = tuple(s.subs(rep) for s in spoint)
|
|
|
|
if self.multiplicity(spoint) == degree - 1:
|
|
point = spoint
|
|
break
|
|
|
|
if len(point) == 0:
|
|
# The region in not a monoid
|
|
raise NotImplementedError()
|
|
|
|
modified_eq = equation
|
|
|
|
# Shifting the region such that fold point moves to origin
|
|
for i, var in enumerate(self.variables):
|
|
modified_eq = modified_eq.subs(var, var + point[i])
|
|
modified_eq = expand(modified_eq)
|
|
|
|
hn = hn_1 = 0
|
|
for term in modified_eq.args:
|
|
if total_degree(term) == degree:
|
|
hn += term
|
|
else:
|
|
hn_1 += term
|
|
|
|
hn_1 = -1*hn_1
|
|
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
|
|
if len(self.variables) == 2:
|
|
|
|
parameter1 = parameters[0]
|
|
if parameter1 == 's':
|
|
# To avoid name conflict between parameters
|
|
s = _symbol('s_', real=True)
|
|
else:
|
|
s = _symbol('s', real=True)
|
|
t = _symbol(parameter1, real=True)
|
|
|
|
hn = hn.subs({self.variables[0]: s, self.variables[1]: t})
|
|
hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t})
|
|
|
|
x_par = (s*(hn_1/hn)).subs(s, 1) + point[0]
|
|
y_par = (t*(hn_1/hn)).subs(s, 1) + point[1]
|
|
|
|
return x_par, y_par
|
|
|
|
elif len(self.variables) == 3:
|
|
|
|
parameter1, parameter2 = parameters
|
|
if 'r' in parameters:
|
|
# To avoid name conflict between parameters
|
|
r = _symbol('r_', real=True)
|
|
else:
|
|
r = _symbol('r', real=True)
|
|
s = _symbol(parameter2, real=True)
|
|
t = _symbol(parameter1, real=True)
|
|
|
|
hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
|
|
hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
|
|
|
|
x_par = (r*(hn_1/hn)).subs(r, 1) + point[0]
|
|
y_par = (s*(hn_1/hn)).subs(r, 1) + point[1]
|
|
z_par = (t*(hn_1/hn)).subs(r, 1) + point[2]
|
|
|
|
return x_par, y_par, z_par
|
|
|
|
raise NotImplementedError()
|
|
|
|
def conic_coeff(variables, equation):
|
|
if total_degree(equation) != 2:
|
|
raise ValueError()
|
|
x = variables[0]
|
|
y = variables[1]
|
|
|
|
equation = expand(equation)
|
|
a = equation.coeff(x**2)
|
|
b = equation.coeff(x*y)
|
|
c = equation.coeff(y**2)
|
|
d = equation.coeff(x, 1).coeff(y, 0)
|
|
e = equation.coeff(y, 1).coeff(x, 0)
|
|
f = equation.coeff(x, 0).coeff(y, 0)
|
|
return a, b, c, d, e, f
|