190 lines
5.8 KiB
Python
190 lines
5.8 KiB
Python
from functools import singledispatch
|
|
from sympy.core.numbers import pi
|
|
from sympy.functions.elementary.trigonometric import tan
|
|
from sympy.simplify import trigsimp
|
|
from sympy.core import Basic, Tuple
|
|
from sympy.core.symbol import _symbol
|
|
from sympy.solvers import solve
|
|
from sympy.geometry import Point, Segment, Curve, Ellipse, Polygon
|
|
from sympy.vector import ImplicitRegion
|
|
|
|
|
|
class ParametricRegion(Basic):
|
|
"""
|
|
Represents a parametric region in space.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy import cos, sin, pi
|
|
>>> from sympy.abc import r, theta, t, a, b, x, y
|
|
>>> from sympy.vector import ParametricRegion
|
|
|
|
>>> ParametricRegion((t, t**2), (t, -1, 2))
|
|
ParametricRegion((t, t**2), (t, -1, 2))
|
|
>>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
|
|
ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
|
|
>>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
|
|
ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
|
|
>>> ParametricRegion((a*cos(t), b*sin(t)), t)
|
|
ParametricRegion((a*cos(t), b*sin(t)), t)
|
|
|
|
>>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
|
|
>>> circle.parameters
|
|
(r, theta)
|
|
>>> circle.definition
|
|
(r*cos(theta), r*sin(theta))
|
|
>>> circle.limits
|
|
{theta: (0, pi)}
|
|
|
|
Dimension of a parametric region determines whether a region is a curve, surface
|
|
or volume region. It does not represent its dimensions in space.
|
|
|
|
>>> circle.dimensions
|
|
1
|
|
|
|
Parameters
|
|
==========
|
|
|
|
definition : tuple to define base scalars in terms of parameters.
|
|
|
|
bounds : Parameter or a tuple of length 3 to define parameter and corresponding lower and upper bound.
|
|
|
|
"""
|
|
def __new__(cls, definition, *bounds):
|
|
parameters = ()
|
|
limits = {}
|
|
|
|
if not isinstance(bounds, Tuple):
|
|
bounds = Tuple(*bounds)
|
|
|
|
for bound in bounds:
|
|
if isinstance(bound, (tuple, Tuple)):
|
|
if len(bound) != 3:
|
|
raise ValueError("Tuple should be in the form (parameter, lowerbound, upperbound)")
|
|
parameters += (bound[0],)
|
|
limits[bound[0]] = (bound[1], bound[2])
|
|
else:
|
|
parameters += (bound,)
|
|
|
|
if not isinstance(definition, (tuple, Tuple)):
|
|
definition = (definition,)
|
|
|
|
obj = super().__new__(cls, Tuple(*definition), *bounds)
|
|
obj._parameters = parameters
|
|
obj._limits = limits
|
|
|
|
return obj
|
|
|
|
@property
|
|
def definition(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def limits(self):
|
|
return self._limits
|
|
|
|
@property
|
|
def parameters(self):
|
|
return self._parameters
|
|
|
|
@property
|
|
def dimensions(self):
|
|
return len(self.limits)
|
|
|
|
|
|
@singledispatch
|
|
def parametric_region_list(reg):
|
|
"""
|
|
Returns a list of ParametricRegion objects representing the geometric region.
|
|
|
|
Examples
|
|
========
|
|
|
|
>>> from sympy.abc import t
|
|
>>> from sympy.vector import parametric_region_list
|
|
>>> from sympy.geometry import Point, Curve, Ellipse, Segment, Polygon
|
|
|
|
>>> p = Point(2, 5)
|
|
>>> parametric_region_list(p)
|
|
[ParametricRegion((2, 5))]
|
|
|
|
>>> c = Curve((t**3, 4*t), (t, -3, 4))
|
|
>>> parametric_region_list(c)
|
|
[ParametricRegion((t**3, 4*t), (t, -3, 4))]
|
|
|
|
>>> e = Ellipse(Point(1, 3), 2, 3)
|
|
>>> parametric_region_list(e)
|
|
[ParametricRegion((2*cos(t) + 1, 3*sin(t) + 3), (t, 0, 2*pi))]
|
|
|
|
>>> s = Segment(Point(1, 3), Point(2, 6))
|
|
>>> parametric_region_list(s)
|
|
[ParametricRegion((t + 1, 3*t + 3), (t, 0, 1))]
|
|
|
|
>>> p1, p2, p3, p4 = [(0, 1), (2, -3), (5, 3), (-2, 3)]
|
|
>>> poly = Polygon(p1, p2, p3, p4)
|
|
>>> parametric_region_list(poly)
|
|
[ParametricRegion((2*t, 1 - 4*t), (t, 0, 1)), ParametricRegion((3*t + 2, 6*t - 3), (t, 0, 1)),\
|
|
ParametricRegion((5 - 7*t, 3), (t, 0, 1)), ParametricRegion((2*t - 2, 3 - 2*t), (t, 0, 1))]
|
|
|
|
"""
|
|
raise ValueError("SymPy cannot determine parametric representation of the region.")
|
|
|
|
|
|
@parametric_region_list.register(Point)
|
|
def _(obj):
|
|
return [ParametricRegion(obj.args)]
|
|
|
|
|
|
@parametric_region_list.register(Curve) # type: ignore
|
|
def _(obj):
|
|
definition = obj.arbitrary_point(obj.parameter).args
|
|
bounds = obj.limits
|
|
return [ParametricRegion(definition, bounds)]
|
|
|
|
|
|
@parametric_region_list.register(Ellipse) # type: ignore
|
|
def _(obj, parameter='t'):
|
|
definition = obj.arbitrary_point(parameter).args
|
|
t = _symbol(parameter, real=True)
|
|
bounds = (t, 0, 2*pi)
|
|
return [ParametricRegion(definition, bounds)]
|
|
|
|
|
|
@parametric_region_list.register(Segment) # type: ignore
|
|
def _(obj, parameter='t'):
|
|
t = _symbol(parameter, real=True)
|
|
definition = obj.arbitrary_point(t).args
|
|
|
|
for i in range(0, 3):
|
|
lower_bound = solve(definition[i] - obj.points[0].args[i], t)
|
|
upper_bound = solve(definition[i] - obj.points[1].args[i], t)
|
|
|
|
if len(lower_bound) == 1 and len(upper_bound) == 1:
|
|
bounds = t, lower_bound[0], upper_bound[0]
|
|
break
|
|
|
|
definition_tuple = obj.arbitrary_point(parameter).args
|
|
return [ParametricRegion(definition_tuple, bounds)]
|
|
|
|
|
|
@parametric_region_list.register(Polygon) # type: ignore
|
|
def _(obj, parameter='t'):
|
|
l = [parametric_region_list(side, parameter)[0] for side in obj.sides]
|
|
return l
|
|
|
|
|
|
@parametric_region_list.register(ImplicitRegion) # type: ignore
|
|
def _(obj, parameters=('t', 's')):
|
|
definition = obj.rational_parametrization(parameters)
|
|
bounds = []
|
|
|
|
for i in range(len(obj.variables) - 1):
|
|
# Each parameter is replaced by its tangent to simplify intergation
|
|
parameter = _symbol(parameters[i], real=True)
|
|
definition = [trigsimp(elem.subs(parameter, tan(parameter/2))) for elem in definition]
|
|
bounds.append((parameter, 0, 2*pi),)
|
|
|
|
definition = Tuple(*definition)
|
|
return [ParametricRegion(definition, *bounds)]
|