90 lines
3.2 KiB
Python
90 lines
3.2 KiB
Python
from .module import Module
|
|
from .. import functional as F
|
|
|
|
from torch import Tensor
|
|
|
|
__all__ = ['PairwiseDistance', 'CosineSimilarity']
|
|
|
|
class PairwiseDistance(Module):
|
|
r"""
|
|
Computes the pairwise distance between input vectors, or between columns of input matrices.
|
|
|
|
Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero
|
|
if ``p`` is negative, i.e.:
|
|
|
|
.. math ::
|
|
\mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,
|
|
|
|
where :math:`e` is the vector of ones and the ``p``-norm is given by.
|
|
|
|
.. math ::
|
|
\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.
|
|
|
|
Args:
|
|
p (real, optional): the norm degree. Can be negative. Default: 2
|
|
eps (float, optional): Small value to avoid division by zero.
|
|
Default: 1e-6
|
|
keepdim (bool, optional): Determines whether or not to keep the vector dimension.
|
|
Default: False
|
|
Shape:
|
|
- Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
|
|
- Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
|
|
- Output: :math:`(N)` or :math:`()` based on input dimension.
|
|
If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.
|
|
|
|
Examples::
|
|
>>> pdist = nn.PairwiseDistance(p=2)
|
|
>>> input1 = torch.randn(100, 128)
|
|
>>> input2 = torch.randn(100, 128)
|
|
>>> output = pdist(input1, input2)
|
|
"""
|
|
|
|
__constants__ = ['norm', 'eps', 'keepdim']
|
|
norm: float
|
|
eps: float
|
|
keepdim: bool
|
|
|
|
def __init__(self, p: float = 2., eps: float = 1e-6, keepdim: bool = False) -> None:
|
|
super().__init__()
|
|
self.norm = p
|
|
self.eps = eps
|
|
self.keepdim = keepdim
|
|
|
|
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
|
|
return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim)
|
|
|
|
|
|
class CosineSimilarity(Module):
|
|
r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.
|
|
|
|
.. math ::
|
|
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.
|
|
|
|
Args:
|
|
dim (int, optional): Dimension where cosine similarity is computed. Default: 1
|
|
eps (float, optional): Small value to avoid division by zero.
|
|
Default: 1e-8
|
|
Shape:
|
|
- Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
|
|
- Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
|
|
and broadcastable with x1 at other dimensions.
|
|
- Output: :math:`(\ast_1, \ast_2)`
|
|
Examples::
|
|
>>> input1 = torch.randn(100, 128)
|
|
>>> input2 = torch.randn(100, 128)
|
|
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
|
|
>>> output = cos(input1, input2)
|
|
"""
|
|
|
|
__constants__ = ['dim', 'eps']
|
|
dim: int
|
|
eps: float
|
|
|
|
def __init__(self, dim: int = 1, eps: float = 1e-8) -> None:
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
|
|
def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
|
|
return F.cosine_similarity(x1, x2, self.dim, self.eps)
|