120 lines
4.4 KiB
Python
120 lines
4.4 KiB
Python
from functools import partial
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ..transforms._presets import ImageClassification
|
|
from ..utils import _log_api_usage_once
|
|
from ._api import register_model, Weights, WeightsEnum
|
|
from ._meta import _IMAGENET_CATEGORIES
|
|
from ._utils import _ovewrite_named_param, handle_legacy_interface
|
|
|
|
|
|
__all__ = ["AlexNet", "AlexNet_Weights", "alexnet"]
|
|
|
|
|
|
class AlexNet(nn.Module):
|
|
def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None:
|
|
super().__init__()
|
|
_log_api_usage_once(self)
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
|
nn.ReLU(inplace=True),
|
|
nn.MaxPool2d(kernel_size=3, stride=2),
|
|
)
|
|
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
|
|
self.classifier = nn.Sequential(
|
|
nn.Dropout(p=dropout),
|
|
nn.Linear(256 * 6 * 6, 4096),
|
|
nn.ReLU(inplace=True),
|
|
nn.Dropout(p=dropout),
|
|
nn.Linear(4096, 4096),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(4096, num_classes),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.features(x)
|
|
x = self.avgpool(x)
|
|
x = torch.flatten(x, 1)
|
|
x = self.classifier(x)
|
|
return x
|
|
|
|
|
|
class AlexNet_Weights(WeightsEnum):
|
|
IMAGENET1K_V1 = Weights(
|
|
url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth",
|
|
transforms=partial(ImageClassification, crop_size=224),
|
|
meta={
|
|
"num_params": 61100840,
|
|
"min_size": (63, 63),
|
|
"categories": _IMAGENET_CATEGORIES,
|
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
|
|
"_metrics": {
|
|
"ImageNet-1K": {
|
|
"acc@1": 56.522,
|
|
"acc@5": 79.066,
|
|
}
|
|
},
|
|
"_ops": 0.714,
|
|
"_file_size": 233.087,
|
|
"_docs": """
|
|
These weights reproduce closely the results of the paper using a simplified training recipe.
|
|
""",
|
|
},
|
|
)
|
|
DEFAULT = IMAGENET1K_V1
|
|
|
|
|
|
@register_model()
|
|
@handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1))
|
|
def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet:
|
|
"""AlexNet model architecture from `One weird trick for parallelizing convolutional neural networks <https://arxiv.org/abs/1404.5997>`__.
|
|
|
|
.. note::
|
|
AlexNet was originally introduced in the `ImageNet Classification with
|
|
Deep Convolutional Neural Networks
|
|
<https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html>`__
|
|
paper. Our implementation is based instead on the "One weird trick"
|
|
paper above.
|
|
|
|
Args:
|
|
weights (:class:`~torchvision.models.AlexNet_Weights`, optional): The
|
|
pretrained weights to use. See
|
|
:class:`~torchvision.models.AlexNet_Weights` below for
|
|
more details, and possible values. By default, no pre-trained
|
|
weights are used.
|
|
progress (bool, optional): If True, displays a progress bar of the
|
|
download to stderr. Default is True.
|
|
**kwargs: parameters passed to the ``torchvision.models.squeezenet.AlexNet``
|
|
base class. Please refer to the `source code
|
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/alexnet.py>`_
|
|
for more details about this class.
|
|
|
|
.. autoclass:: torchvision.models.AlexNet_Weights
|
|
:members:
|
|
"""
|
|
|
|
weights = AlexNet_Weights.verify(weights)
|
|
|
|
if weights is not None:
|
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
|
|
|
model = AlexNet(**kwargs)
|
|
|
|
if weights is not None:
|
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
|
|
|
return model
|