ium_478815/evaluation.py

106 lines
3.1 KiB
Python
Raw Normal View History

2022-05-06 21:17:03 +02:00
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import sys
import os
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
2022-05-06 22:41:47 +02:00
from datetime import datetime
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.metrics import classification_report
2022-05-06 21:17:03 +02:00
scaler = StandardScaler()
# Model
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1,1)
def forward(self, x):
y_predicted = torch.sigmoid(self.linear(x))
return y_predicted
data = pd.read_csv('data.csv')
data.dropna()
training_data = data.sample(frac=0.9, random_state=25)
testing_data = data.drop(training_data.index)
print(f"No. of training examples: {training_data.shape[0]}")
print(f"No. of testing examples: {testing_data.shape[0]}")
training_data = training_data[['sqft_living', 'price']]
testing_data = testing_data[['sqft_living', 'price']]
training_data[['price']] = training_data[['price']] / 10000000
training_data[['sqft_living']] = training_data[['sqft_living']] / 10000
testing_data[['price']] = testing_data[['price']] / 10000000
testing_data[['sqft_living']] = testing_data[['sqft_living']] / 10000
# Tensory
X_training = training_data[['sqft_living']].to_numpy()
X_testing = testing_data[['sqft_living']].to_numpy()
y_training = training_data[['price']].to_numpy()
y_testing = testing_data[['price']].to_numpy()
import torch
torch.from_file
X_training = torch.from_numpy(X_training.astype(np.float32))
X_testing = torch.from_numpy(X_testing.astype(np.float32))
y_training = torch.from_numpy(y_training.astype(np.float32))
y_testing = torch.from_numpy(y_testing.astype(np.float32))
model = Model()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Trening
2022-05-06 22:41:47 +02:00
num_epochs = 1000
2022-05-06 21:17:03 +02:00
for epoch in range(num_epochs):
y_predicted = model(X_training)
loss = criterion(y_predicted,y_training)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if (epoch%100==0):
print(f'epoch:{epoch+1},loss = {loss.item():.4f}')
with torch.no_grad():
y_predicted = model(X_testing)
y_predicted_cls = y_predicted.round()
acc = y_predicted_cls.eq(y_testing).sum()/float(y_testing.shape[0])
2022-05-06 22:41:47 +02:00
#print(f'{acc:.4f}')
rmse = mean_squared_error(y_testing, y_predicted)
#print(rmse)
mae = mean_absolute_error(y_testing, y_predicted)
#print(mae)
with open('metrics.txt', 'a+') as f:
f.write('Root mean squared error:' + str(rmse) + '\n')
f.write('Mean absolute error:' + str(mae) + '\n')
#count = [float(line) for line in f if line]
#builds = list(range(1, len(count)))
with open('metric.txt', 'a+') as f:
f.write(str(rmse) + '\n')
with open('metric.txt') as file:
y_rmse = [float(line) for line in file if line]
x_builds = list(range(1, len(y_rmse) + 1))
plt.xlabel('Build')
plt.ylabel('RMSE')
plt.plot(x_builds, y_rmse, label='RMSE')
plt.legend()
plt.show()
plt.savefig('metrics.png')