This commit is contained in:
Kornelia Girejko 2022-04-24 22:10:16 +02:00
parent b5e2d6faa2
commit 4de3b5a284

76
biblioteka_DL Normal file
View File

@ -0,0 +1,76 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# Model
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1,1)
def forward(self, x):
y_predicted = torch.sigmoid(self.linear(x))
return y_predicted
data = pd.read_csv('data.csv')
data.dropna()
training_data = data.sample(frac=0.9, random_state=25)
testing_data = data.drop(training_data.index)
print(f"No. of training examples: {training_data.shape[0]}")
print(f"No. of testing examples: {testing_data.shape[0]}")
training_data = training_data[['sqft_living', 'price']]
testing_data = testing_data[['sqft_living', 'price']]
training_data[['price']] = training_data[['price']] / 10000000
training_data[['sqft_living']] = training_data[['sqft_living']] / 10000
testing_data[['price']] = testing_data[['price']] / 10000000
testing_data[['sqft_living']] = testing_data[['sqft_living']] / 10000
# Tensory
X_training = training_data[['sqft_living']].to_numpy()
X_testing = testing_data[['sqft_living']].to_numpy()
y_training = training_data[['price']].to_numpy()
y_testing = testing_data[['price']].to_numpy()
import torch
torch.from_file
X_training = torch.from_numpy(X_training.astype(np.float32))
X_testing = torch.from_numpy(X_testing.astype(np.float32))
y_training = torch.from_numpy(y_training.astype(np.float32))
y_testing = torch.from_numpy(y_testing.astype(np.float32))
model = Model()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Trening
num_epochs = 1000
for epoch in range(num_epochs):
y_predicted = model(X_training)
loss = criterion(y_predicted,y_training)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if (epoch%100==0):
print(f'epoch:{epoch+1},loss = {loss.item():.4f}')
with torch.no_grad():
y_predicted = model(X_testing)
y_predicted_cls = y_predicted.round()
acc = y_predicted_cls.eq(y_testing).sum()/float(y_testing.shape[0])
print(f'{acc:.4f}')
result = open("output",'w+')
result.write(f'{y_predicted}')