import sacred import torch import torch.nn as nn import torch.nn.functional as F import pandas as pd import numpy as np import sys import os from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.preprocessing import StandardScaler scaler = StandardScaler() from sacred import Experiment from sacred.observers import FileStorageObserver from sacred.observers import MongoObserver from sklearn.metrics import accuracy_score from sacred.observers.file_storage import file_storage_option from sacred.observers.mongo import mongo_db_option from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error ex = Experiment("s478815",save_git_info=False) ex.observers.append(FileStorageObserver('experiment')) ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) @ex.config def my_config(): epochs = 1000 # Model class Model(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(1,1) def forward(self, x): y_predicted = torch.sigmoid(self.linear(x)) return y_predicted data = pd.read_csv('data.csv') data.dropna() training_data = data.sample(frac=0.9, random_state=25) testing_data = data.drop(training_data.index) print(f"No. of training examples: {training_data.shape[0]}") print(f"No. of testing examples: {testing_data.shape[0]}") training_data = training_data[['sqft_living', 'price']] testing_data = testing_data[['sqft_living', 'price']] training_data[['price']] = training_data[['price']] / 10000000 training_data[['sqft_living']] = training_data[['sqft_living']] / 10000 testing_data[['price']] = testing_data[['price']] / 10000000 testing_data[['sqft_living']] = testing_data[['sqft_living']] / 10000 # Tensory X_training = training_data[['sqft_living']].to_numpy() X_testing = testing_data[['sqft_living']].to_numpy() y_training = training_data[['price']].to_numpy() y_testing = testing_data[['price']].to_numpy() torch.from_file X_training = torch.from_numpy(X_training.astype(np.float32)) X_testing = torch.from_numpy(X_testing.astype(np.float32)) y_training = torch.from_numpy(y_training.astype(np.float32)) y_testing = torch.from_numpy(y_testing.astype(np.float32)) model = Model() criterion = nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) @ex.automain def my_main(epochs): # Trening #epochs = EPOCHS for epochs in range(epochs): y_predicted = model(X_training) loss = criterion(y_predicted,y_training) loss.backward() optimizer.step() optimizer.zero_grad() with open ("output.txt",'a+') as f: if (epochs%100==0): f.write(f'epoch:{epochs+1},loss = {loss.item():.4f}') with torch.no_grad(): y_predicted = model(X_testing) y_predicted_cls = y_predicted.round() acc = y_predicted_cls.eq(y_testing).sum()/float(y_testing.shape[0]) print(f'{acc:.4f}') #result = open("output",'w+') #result.write(f'{y_predicted}') torch.save(model, "modelS.pkl") rmse = mean_squared_error(y_testing, y_predicted) #print(rmse) mae = mean_absolute_error(y_testing, y_predicted) #print(mae) #with open('metrics.txt', 'a+') as f: #f.write('Root mean squared error:' + str(rmse) + '\n') #f.write('Mean absolute error:' + str(mae) + '\n') #count = [float(line) for line in f if line] #builds = list(range(1, len(count))) #with open('metric.txt', 'a+') as f: # f.write(str(rmse) + '\n') #with open('metric.txt') as file: # y_rmse = [float(line) for line in file if line] # x_builds = list(range(1, len(y_rmse) + 1)) ex.add_artifact("modelS.pkl") ex.run()