ium_478815/train-mlflow.py

130 lines
4.0 KiB
Python

import sacred
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
import sys
import os
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
from sacred import Experiment
from sacred.observers import FileStorageObserver
from sacred.observers import MongoObserver
from sklearn.metrics import accuracy_score
from sacred.observers.file_storage import file_storage_option
from sacred.observers.mongo import mongo_db_option
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
import warnings
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from urllib.parse import urlparse
import mlflow
import mlflow.sklearn
from urllib.parse import urlparse
mlflow.set_experiment("s478815")
# Model
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(1,1)
def forward(self, x):
y_predicted = torch.sigmoid(self.linear(x))
return y_predicted
data = pd.read_csv('data.csv')
data.dropna()
training_data = data.sample(frac=0.9, random_state=25)
testing_data = data.drop(training_data.index)
print(f"No. of training examples: {training_data.shape[0]}")
print(f"No. of testing examples: {testing_data.shape[0]}")
training_data = training_data[['sqft_living', 'price']]
testing_data = testing_data[['sqft_living', 'price']]
training_data[['price']] = training_data[['price']] / 10000000
training_data[['sqft_living']] = training_data[['sqft_living']] / 10000
testing_data[['price']] = testing_data[['price']] / 10000000
testing_data[['sqft_living']] = testing_data[['sqft_living']] / 10000
# Tensory
X_training = training_data[['sqft_living']].to_numpy()
X_testing = testing_data[['sqft_living']].to_numpy()
y_training = training_data[['price']].to_numpy()
y_testing = testing_data[['price']].to_numpy()
torch.from_file
X_training = torch.from_numpy(X_training.astype(np.float32))
X_testing = torch.from_numpy(X_testing.astype(np.float32))
y_training = torch.from_numpy(y_training.astype(np.float32))
y_testing = torch.from_numpy(y_testing.astype(np.float32))
model = Model()
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
epochs = int(sys.argv[1])
def my_main(epochs):
# Trening
mlflow.log_param("epochs", epochs)
for epochs in range(epochs):
y_predicted = model(X_training)
loss = criterion(y_predicted,y_training)
loss.backward()
optimizer.step()
optimizer.zero_grad()
with open ("output.txt",'a+') as f:
if (epochs%100==0):
f.write(f'epoch:{epochs+1},loss = {loss.item():.4f}')
with torch.no_grad():
y_predicted = model(X_testing)
y_predicted_cls = y_predicted.round()
acc = y_predicted_cls.eq(y_testing).sum()/float(y_testing.shape[0])
print(f'{acc:.4f}')
#result = open("output",'w+')
#result.write(f'{y_predicted}')
torch.save(model, "modelS.pkl")
rmse = mean_squared_error(y_testing, y_predicted)
#print(rmse)
mae = mean_absolute_error(y_testing, y_predicted)
#print(mae)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("mae", mae)
#with open('metrics.txt', 'a+') as f:
#f.write('Root mean squared error:' + str(rmse) + '\n')
#f.write('Mean absolute error:' + str(mae) + '\n')
#count = [float(line) for line in f if line]
#builds = list(range(1, len(count)))
#with open('metric.txt', 'a+') as f:
# f.write(str(rmse) + '\n')
#with open('metric.txt') as file:
# y_rmse = [float(line) for line in file if line]
# x_builds = list(range(1, len(y_rmse) + 1))
with mlflow.start_run() as run:
my_main(epochs)