paranormal-or-skeptic-ISI-p.../run.py

192 lines
3.7 KiB
Python
Raw Normal View History

2022-06-14 23:36:56 +02:00
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import torch
import csv
import lzma
import gensim.downloader
from nltk import word_tokenize
# In[ ]:
# In[2]:
def predict_year(x, path_out, model):
results = model.predict(x)
with open(path_out, 'wt') as file:
for r in results:
file.write(str(r) + '\n')
# In[3]:
def read_file(filename):
result = []
with open(filename, 'r', encoding="utf-8") as file:
for line in file:
text = line.split("\t")[0].strip()
result.append(text)
return result
# In[4]:
x_train = pd.read_table('train/in.tsv', sep='\t', header=None, quoting=3)
x_train = x_train[0:200000]
x_train
# In[5]:
with open('train/expected.tsv', 'r', encoding='utf8') as file:
y_train = pd.read_csv(file, sep='\t', header=None)
y_train = y_train[0:200000]
y_train
# In[6]:
with open('dev-0/in.tsv', 'r', encoding='utf8') as file:
x_dev = pd.read_csv(file, sep='\t', header=None)
x_dev
# In[7]:
with open('test-A/in.tsv', 'r', encoding='utf8') as file:
x_test = pd.read_csv(file, sep='\t', header=None)
x_test
# In[8]:
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.l01 = torch.nn.Linear(300, 300)
self.l02 = torch.nn.Linear(300, 1)
def forward(self, x):
x = self.l01(x)
x = torch.relu(x)
x = self.l02(x)
x = torch.sigmoid(x)
return x
# In[9]:
x_train = x_train[0].str.lower()
y_train = y_train[0]
x_dev = x_dev[0].str.lower()
x_test = x_test[0].str.lower()
x_train = [word_tokenize(x) for x in x_train]
x_dev = [word_tokenize(x) for x in x_dev]
x_test = [word_tokenize(x) for x in x_test]
# In[11]:
from gensim.test.utils import common_texts
from gensim.models import Word2Vec
word2vec = gensim.downloader.load('word2vec-google-news-300')
x_train = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_train]
x_dev = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_dev]
x_test = [np.mean([word2vec[word] for word in content if word in word2vec] or [np.zeros(300)], axis=0) for content in x_test]
# In[ ]:
model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(BATCH_SIZE):
model.train()
for i in range(0, y_train.shape[0], BATCH_SIZE):
X = x_train[i:i + BATCH_SIZE]
X = torch.tensor(X)
y = y_train[i:i + BATCH_SIZE]
y = torch.tensor(y.astype(np.float32).to_numpy()).reshape(-1, 1)
optimizer.zero_grad()
outputs = model(X.float())
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# In[ ]:
y_dev = []
y_test = []
model.eval()
with torch.no_grad():
for i in range(0, len(x_dev), BATCH_SIZE):
X = x_dev[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
prediction = (outputs > 0.5)
y_dev += prediction.tolist()
for i in range(0, len(x_test), BATCH_SIZE):
X = x_test[i:i + BATCH_SIZE]
X = torch.tensor(X)
outputs = model(X.float())
y = (outputs >= 0.5)
y_test += prediction.tolist()
# In[ ]:
y_dev = np.asarray(y_dev, dtype=np.int32)
y_test = np.asarray(y_test, dtype=np.int32)
# In[ ]:
with open('./dev-0/out.tsv', 'wt') as file:
for r in y_dev:
file.write(str(r) + '\n')
# In[ ]:
with open('./test-A/out.tsv', 'wt') as file:
for r in y_test:
file.write(str(r) + '\n')
# In[ ]:
get_ipython().system('jupyter nbconvert --to script run.ipynb')