forked from kubapok/retroc2
168 lines
4.2 KiB
Python
168 lines
4.2 KiB
Python
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"id": "greenhouse-technician",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os\n",
|
||
|
"import sklearn\n",
|
||
|
"import pandas as pd\n",
|
||
|
"from gzip import open as open_gz\n",
|
||
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||
|
"from sklearn.pipeline import make_pipeline\n",
|
||
|
"from sklearn.linear_model import LinearRegression\n",
|
||
|
"from sklearn.metrics import mean_squared_error"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"id": "acoustic-dividend",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def predict_year(x, path_out, model):\n",
|
||
|
" results = model.predict(x)\n",
|
||
|
" with open(path_out, 'wt') as file:\n",
|
||
|
" for r in results:\n",
|
||
|
" file.write(str(r) + '\\n') "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"id": "senior-harassment",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"with open('train/train.tsv', 'r', encoding='utf8') as file:\n",
|
||
|
" train = pd.read_csv(file, sep='\\t', names=['Date1', 'Date2', 'Title', 'Author', 'Text'])\n",
|
||
|
" \n",
|
||
|
"#train = train[0:10000]\n",
|
||
|
"train_x = train['Text']\n",
|
||
|
"train['Date'] = (train['Date1'].astype(float) + train['Date2'].astype(float))/2\n",
|
||
|
"train_y=train['Date1']"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"id": "polyphonic-coach",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||
|
" ('linearregression', LinearRegression())])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||
|
"model.fit(train_x, train_y)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"id": "varying-wright",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"with open('dev-0/in.tsv', 'r', encoding='utf8') as file:\n",
|
||
|
" x_dev0 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||
|
"x_dev0 = x_dev0[0] \n",
|
||
|
"x_dev0[19999] = 'nie jest'\n",
|
||
|
"x_dev0[20000] = 'nie wiem'"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"id": "frozen-ticket",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"with open('dev-1/in.tsv', 'r', encoding='utf8') as file:\n",
|
||
|
" x_dev1 = pd.read_csv(file, header=None, sep='\\t')\n",
|
||
|
"x_dev1 = x_dev1[0] "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"id": "8e3a18db-f966-45e4-b881-4b336f188055",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"with open('test-A/in.tsv', 'r', encoding='utf8') as file:\n",
|
||
|
" x_test = pd.read_csv(file, header=None, sep='\\t')\n",
|
||
|
"x_test = x_test[0] "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"id": "traditional-amount",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"#y_dev = pd.read_csv('dev-0/out.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||
|
"#y_dev = y_dev[0]\n",
|
||
|
"#y_dev_exp = pd.read_csv('dev-0/expected.tsv',header = None, sep = '/t',engine = 'python')\n",
|
||
|
"#y_dev_exp = y_dev_exp[0]\n",
|
||
|
"#RMSE_dev = mean_squared_error(y_dev_exp, y_dev) "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 18,
|
||
|
"id": "close-clinton",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"predict_year(x_dev0, 'dev-0/out.tsv', model)\n",
|
||
|
"predict_year(x_dev1,'dev-1/out.tsv', model)\n",
|
||
|
"predict_year(x_test,'test-A/out.tsv', model)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "official-sweet",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.12"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|