{ "cells": [ { "cell_type": "code", "execution_count": 15, "id": "greenhouse-technician", "metadata": {}, "outputs": [], "source": [ "import os\n", "import sklearn\n", "import pandas as pd\n", "from gzip import open as open_gz\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error" ] }, { "cell_type": "code", "execution_count": 23, "id": "acoustic-dividend", "metadata": {}, "outputs": [], "source": [ "def predict_year(x, path_out, model):\n", " \n", " results = model.predict(x)\n", "\n", " with open(path_out, 'wt') as file:\n", " for r in results:\n", " #if r%1==0:\n", " # r = r+0,5\n", " file.write(str(r) + '\\n')\n", " " ] }, { "cell_type": "code", "execution_count": 7, "id": "senior-harassment", "metadata": {}, "outputs": [], "source": [ "with open('train.tsv', 'r', encoding='utf8') as file:\n", " train = pd.read_csv(file, sep='\\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])\n", " \n", "#with open('train/train.tsv', 'r', encoding='utf8') as file:\n", "# train = pd.read_csv(file, sep='\\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])\n", "train = train[0:2000]\n", "train_x=train['Text'] \n", "train_y=train['Begin']" ] }, { "cell_type": "code", "execution_count": 8, "id": "beneficial-traveler", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 nowią część kultury. U nas już nikt ich nie ch...\n", "1 hlstorja znana w okresie piramid, jak wlaśclcl...\n", "2 działek. Idąc dalej w swych hipotetycznych roz...\n", "3 w Warszawie o stosunkach domowych dziatwy szko...\n", "4 \\\\'iykład: \"Cywilizacyjna Koncepcja dziejów ¥e...\n", " ... \n", "1995 i' padną dobitne rozkazy. Od modlitwy nie poni...\n", "1996 WOJEWÖDZKI roz. 28 N'r. 7 III. IW slüsUlnlku d...\n", "1997 główną wagę kłaść należy na wspomniane w Bibli...\n", "1998 dniu 1'3 tym marca rozchwytywali broil z miejs...\n", "1999 ubezpieczenie społeczne, po rozpoznaniu na pos...\n", "Name: Text, Length: 2000, dtype: object" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_x" ] }, { "cell_type": "code", "execution_count": 9, "id": "polyphonic-coach", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pipeline(memory=None,\n", " steps=[('tfidfvectorizer', TfidfVectorizer(analyzer='word', binary=False, decode_error='strict',\n", " dtype=, encoding='utf-8', input='content',\n", " lowercase=True, max_df=1.0, max_features=None, min_df=1,\n", " ngram_range=(1, 1), norm='l2', preprocessor=None, smooth...ression', LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,\n", " normalize=False))])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = make_pipeline(TfidfVectorizer(), LinearRegression())\n", "model.fit(train_x, train_y)" ] }, { "cell_type": "code", "execution_count": 10, "id": "varying-wright", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 Gazet, a tam o osobie zamformuie się. Uwiadomi...\n", "1 materiały, która wyniesie na rok w przybliżeni...\n", "2 były nawet w posiadaniu miejscowego polskiego ...\n", "3 Usuwanie nawarstwień... 105 powania nieudowodn...\n", "4 nie słyszał odC .S' źnniefAle'ObJ—A.\" \"hOdZI Ś...\n", " ... \n", "19993 wypoczęci! wzmocnieni, pełni najiepszych chęci...\n", "19994 ten krok draltyczny, ahby na tirazniejllzej je...\n", "19995 47 ust. 1 pkt 2 tej ustawy, obowiązkiem nałożo...\n", "19996 w, mmm ”w\" w „|. ..no-ń r. .I. Lennobrovi jako...\n", "19997 lat, przy czym za kolejny rok wnoszona jest do...\n", "Name: 0, Length: 19998, dtype: object" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with open('devin.tsv', 'r', encoding='utf8') as file:\n", " x_dev = pd.read_csv(file, header=None, sep='\\t')\n", "x_dev = x_dev[0] \n", "x_dev" ] }, { "cell_type": "code", "execution_count": 24, "id": "frozen-ticket", "metadata": {}, "outputs": [], "source": [ "predict_year(x_dev, 'devout.tsv', model)" ] }, { "cell_type": "code", "execution_count": 25, "id": "traditional-amount", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1862.531349\n", "1 1962.791429\n", "2 1950.953131\n", "3 1965.496217\n", "4 1920.848072\n", " ... \n", "19993 1914.228771\n", "19994 1902.264257\n", "19995 2009.252595\n", "19996 1918.643586\n", "19997 1963.890277\n", "Name: 0, Length: 19998, dtype: float64" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_dev = pd.read_csv('devout.tsv',header = None, sep = '/t',engine = 'python')\n", "y_dev = y_dev[0]\n", "y_dev" ] }, { "cell_type": "code", "execution_count": 26, "id": "cordless-maker", "metadata": {}, "outputs": [], "source": [ "y_dev_exp = pd.read_csv('expected.tsv',header = None, sep = '/t',engine = 'python')\n", "y_dev_exp = y_dev_exp[0:19998]\n", "y_dev_exp = y_dev_exp[0]" ] }, { "cell_type": "code", "execution_count": 27, "id": "authorized-basics", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3631.1358243407444" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "RMSE_dev = mean_squared_error(y_dev_exp, y_dev)\n", "RMSE_dev " ] }, { "cell_type": "code", "execution_count": null, "id": "congressional-requirement", "metadata": {}, "outputs": [], "source": [ "x_dev = pd.read_csv('dev-0/in.tsv',header = None, sep = '/t',engine = 'python')\n", "x_dev = x_dev[0]\n", "x_dev = pd.read_csv('dev-1/in.tsv',header = None, sep = '/t',engine = 'python')\n", "x_dev = x_dev[0]\n", "x_test = pd.read_csv('test-A/in.tsv',header = None, sep = '/t',engine = 'python')\n", "x_test = x_test[0]\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "close-clinton", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "official-sweet", "metadata": {}, "outputs": [], "source": [ "#evaluation(x_dev,'dev-0/out.tsv', model)\n", "#evaluation(x_test,'test-A/out.tsv', model)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 5 }