{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "835530c2-0129-4b5f-a41c-f1870ca1307f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sklearn\n",
    "import pandas as pd\n",
    "from sklearn.metrics import accuracy_score\n",
    "from gzip import open as open_gz\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn.naive_bayes import MultinomialNB\n",
    "from sklearn.pipeline import make_pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "5db73671-80b9-4099-85a0-08ecf77250d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluation(x, path_out, model):\n",
    "    results = model.predict(x)\n",
    "\n",
    "    with open(path_out, 'wt') as file:\n",
    "        for r in results:\n",
    "            file.write(str(r) + '\\n')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2120f43e-d587-4481-a04c-dea9520cecec",
   "metadata": {},
   "outputs": [],
   "source": [
    "train = pd.read_csv('train/train.tsv', header = None, sep = '\\t', error_bad_lines = False)\n",
    "\n",
    "x_train = train[1]\n",
    "y_train = train[0]\n",
    "x_dev = pd.read_csv('dev-0/in.tsv',header = None, sep = '/t',engine = 'python')\n",
    "x_dev = x_dev[0]\n",
    "x_test = pd.read_csv('test-A/in.tsv',header = None, sep = '/t',engine = 'python')\n",
    "x_test = x_test[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "cdfefa84-e535-48e8-844a-10e24b2a3555",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
       "                ('multinomialnb', MultinomialNB())])"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = make_pipeline(TfidfVectorizer(), MultinomialNB())\n",
    "model.fit(x_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "e1b7fe0c-a21a-42cf-8cd4-46ee932d5282",
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluation(x_dev,'dev-0/out.tsv', model)\n",
    "evaluation(x_test,'test-A/out.tsv', model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a269ea0-eefd-4907-bf65-9bb53ad296b7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}