paranormal-or-skeptic/run.py

125 lines
3.2 KiB
Python
Raw Permalink Normal View History

2022-05-24 11:09:21 +02:00
# %%
import numpy as np
import gensim
import torch
import pandas as pd
from gensim.models import Word2Vec
from gensim import downloader
from sklearn.feature_extraction.text import TfidfVectorizer
# %%
BATCH_SIZE = 10
EPOCHS = 100
FEAUTERES = 200
# %%
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEAUTERES,500)
self.fc2 = torch.nn.Linear(500,1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
# %%
word2vec = downloader.load("glove-twitter-200")
# %%
def readData(fileName):
with open(f'{fileName}/in.tsv', 'r', encoding='utf8') as f:
X = np.array([x.strip().lower() for x in f.readlines()])
with open(f'{fileName}/expected.tsv', 'r', encoding='utf8') as f:
y = np.array([int(x.strip()) for x in f.readlines()])
return X,y
# %%
X_file,y_file = readData('dev-0')
# %%
x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
or [np.zeros(FEAUTERES)], axis=0) for doc in X_file]
# %%
def train_model(X_file,y_file):
model = NeuralNetworkModel()
criterion = torch.nn.BCELoss()
optimizer = torch.optim.ASGD(model.parameters(), lr=0.05)
for epoch in range(EPOCHS):
print(epoch)
loss_score = 0
acc_score = 0
items_total = 0
for i in range(0, y_file.shape[0], BATCH_SIZE):
x = X_file[i:i+BATCH_SIZE]
x = torch.tensor(np.array(x).astype(np.float32))
y = y_file[i:i+BATCH_SIZE]
y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)
y_pred = model(x)
acc_score += torch.sum((y_pred > 0.5) == y).item()
items_total += y.shape[0]
optimizer.zero_grad()
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
loss_score += loss.item() * y.shape[0]
print((loss_score / items_total), (acc_score / items_total))
return model
# %%
def predict(model,x_file):
y_dev = []
with torch.no_grad():
for i in range(0, len(x_file), BATCH_SIZE):
x = x_file[i:i+BATCH_SIZE]
x = torch.tensor(np.array(x).astype(np.float32))
outputs = model(x)
y = (outputs > 0.5)
y_dev.extend(y)
return y_dev
# %%
def wrtieToFile(fileName,y_file):
y_out = []
for y in y_file:
y_out.append(int(str(y[0]).split('(')[1].split(')')[0]=='True'))
with open(f'{fileName}/out.tsv','w',encoding='utf8') as f:
for y in y_out:
f.write(f'{y}\n')
# %%
model = train_model(x_train_w2v,y_file)
# %%
y_dev=predict(model,x_train_w2v)
# %%
wrtieToFile("dev-0",y_dev)
# %%
with open(f'test-A/in.tsv', 'r', encoding='utf8') as f:
X = np.array([x.strip().lower() for x in f.readlines()])
# %%
x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
or [np.zeros(FEAUTERES)], axis=0) for doc in X]
# %%
y_dev=predict(model,x_train_w2v)
# %%
wrtieToFile("test-A",y_dev)