125 lines
3.2 KiB
Python
125 lines
3.2 KiB
Python
# %%
|
|
import numpy as np
|
|
import gensim
|
|
import torch
|
|
import pandas as pd
|
|
from gensim.models import Word2Vec
|
|
from gensim import downloader
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
# %%
|
|
BATCH_SIZE = 10
|
|
EPOCHS = 100
|
|
FEAUTERES = 200
|
|
|
|
|
|
# %%
|
|
class NeuralNetworkModel(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super(NeuralNetworkModel, self).__init__()
|
|
self.fc1 = torch.nn.Linear(FEAUTERES,500)
|
|
self.fc2 = torch.nn.Linear(500,1)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = torch.relu(x)
|
|
x = self.fc2(x)
|
|
x = torch.sigmoid(x)
|
|
return x
|
|
|
|
# %%
|
|
word2vec = downloader.load("glove-twitter-200")
|
|
|
|
# %%
|
|
def readData(fileName):
|
|
with open(f'{fileName}/in.tsv', 'r', encoding='utf8') as f:
|
|
X = np.array([x.strip().lower() for x in f.readlines()])
|
|
with open(f'{fileName}/expected.tsv', 'r', encoding='utf8') as f:
|
|
y = np.array([int(x.strip()) for x in f.readlines()])
|
|
return X,y
|
|
|
|
# %%
|
|
X_file,y_file = readData('dev-0')
|
|
|
|
# %%
|
|
x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
|
|
or [np.zeros(FEAUTERES)], axis=0) for doc in X_file]
|
|
|
|
# %%
|
|
def train_model(X_file,y_file):
|
|
model = NeuralNetworkModel()
|
|
|
|
criterion = torch.nn.BCELoss()
|
|
optimizer = torch.optim.ASGD(model.parameters(), lr=0.05)
|
|
for epoch in range(EPOCHS):
|
|
print(epoch)
|
|
loss_score = 0
|
|
acc_score = 0
|
|
items_total = 0
|
|
for i in range(0, y_file.shape[0], BATCH_SIZE):
|
|
x = X_file[i:i+BATCH_SIZE]
|
|
x = torch.tensor(np.array(x).astype(np.float32))
|
|
y = y_file[i:i+BATCH_SIZE]
|
|
y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)
|
|
y_pred = model(x)
|
|
acc_score += torch.sum((y_pred > 0.5) == y).item()
|
|
items_total += y.shape[0]
|
|
|
|
optimizer.zero_grad()
|
|
loss = criterion(y_pred, y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
loss_score += loss.item() * y.shape[0]
|
|
|
|
print((loss_score / items_total), (acc_score / items_total))
|
|
return model
|
|
|
|
# %%
|
|
def predict(model,x_file):
|
|
y_dev = []
|
|
with torch.no_grad():
|
|
for i in range(0, len(x_file), BATCH_SIZE):
|
|
x = x_file[i:i+BATCH_SIZE]
|
|
x = torch.tensor(np.array(x).astype(np.float32))
|
|
outputs = model(x)
|
|
y = (outputs > 0.5)
|
|
y_dev.extend(y)
|
|
return y_dev
|
|
|
|
|
|
# %%
|
|
def wrtieToFile(fileName,y_file):
|
|
y_out = []
|
|
for y in y_file:
|
|
y_out.append(int(str(y[0]).split('(')[1].split(')')[0]=='True'))
|
|
with open(f'{fileName}/out.tsv','w',encoding='utf8') as f:
|
|
for y in y_out:
|
|
f.write(f'{y}\n')
|
|
|
|
# %%
|
|
model = train_model(x_train_w2v,y_file)
|
|
|
|
# %%
|
|
y_dev=predict(model,x_train_w2v)
|
|
|
|
# %%
|
|
wrtieToFile("dev-0",y_dev)
|
|
|
|
# %%
|
|
with open(f'test-A/in.tsv', 'r', encoding='utf8') as f:
|
|
X = np.array([x.strip().lower() for x in f.readlines()])
|
|
|
|
# %%
|
|
x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
|
|
or [np.zeros(FEAUTERES)], axis=0) for doc in X]
|
|
|
|
# %%
|
|
y_dev=predict(model,x_train_w2v)
|
|
|
|
# %%
|
|
wrtieToFile("test-A",y_dev)
|
|
|
|
|