{ "cells": [ { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.pipeline import make_pipeline" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\User\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n", "\n", "\n", " exec(code_obj, self.user_global_ns, self.user_ns)\n", "b'Skipping line 3249: expected 2 fields, saw 3\\nSkipping line 66393: expected 2 fields, saw 3\\nSkipping line 76415: expected 2 fields, saw 3\\n'\n" ] } ], "source": [ "data = pd.read_csv('train/train.tsv', sep='\\t', header=None, error_bad_lines=False)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "X = data[1]\n", "\n", "with open('dev-0/in.tsv', 'r', encoding='utf8') as f:\n", " Xdev = f.readlines()\n", "Xdev = pd.Series(Xdev)\n", "\n", "with open('test-A/in.tsv', 'r', encoding='utf8') as f:\n", " Xtest = f.readlines()\n", "Xtest = pd.Series(Xtest)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "y = data[0].astype('string')\n", "\n", "ydev = pd.read_csv('dev-0/expected.tsv', sep='\\t', header=None)\n", "ydev = ydev.squeeze()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "model = make_pipeline(TfidfVectorizer(), MultinomialNB())" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n", " ('multinomialnb', MultinomialNB())])" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "predictions_dev0 = model.predict(Xdev)\n", "predictions_dev0 = pd.Series(predictions_dev0)\n", "predictions_dev0 = predictions_dev0" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "with open('dev-0/out.tsv', 'wt') as f:\n", " for pred in predictions_dev0:\n", " f.write(str(pred)+'\\n')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "predictions_testA = model.predict(Xtest)\n", "predictions_testA = pd.Series(predictions_testA)\n", "predictions_testA = predictions_testA" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "with open('test-A/out.tsv', 'wt') as f:\n", " for pred in predictions_testA:\n", " f.write(str(pred)+'\\n')" ] } ], "metadata": { "interpreter": { "hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb" }, "kernelspec": { "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }