168 lines
3.9 KiB
Plaintext
168 lines
3.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
|
"from sklearn.pipeline import make_pipeline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"c:\\Users\\User\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
|
|
"\n",
|
|
"\n",
|
|
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
|
|
"b'Skipping line 3249: expected 2 fields, saw 3\\nSkipping line 66393: expected 2 fields, saw 3\\nSkipping line 76415: expected 2 fields, saw 3\\n'\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"data = pd.read_csv('train/train.tsv', sep='\\t', header=None, error_bad_lines=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"X = data[1]\n",
|
|
"\n",
|
|
"with open('dev-0/in.tsv', 'r', encoding='utf8') as f:\n",
|
|
" Xdev = f.readlines()\n",
|
|
"Xdev = pd.Series(Xdev)\n",
|
|
"\n",
|
|
"with open('test-A/in.tsv', 'r', encoding='utf8') as f:\n",
|
|
" Xtest = f.readlines()\n",
|
|
"Xtest = pd.Series(Xtest)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"y = data[0].astype('string')\n",
|
|
"\n",
|
|
"ydev = pd.read_csv('dev-0/expected.tsv', sep='\\t', header=None)\n",
|
|
"ydev = ydev.squeeze()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = make_pipeline(TfidfVectorizer(), MultinomialNB())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
|
" ('multinomialnb', MultinomialNB())])"
|
|
]
|
|
},
|
|
"execution_count": 35,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"model.fit(X, y)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"predictions_dev0 = model.predict(Xdev)\n",
|
|
"predictions_dev0 = pd.Series(predictions_dev0)\n",
|
|
"predictions_dev0 = predictions_dev0"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('dev-0/out.tsv', 'wt') as f:\n",
|
|
" for pred in predictions_dev0:\n",
|
|
" f.write(str(pred)+'\\n')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 38,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"predictions_testA = model.predict(Xtest)\n",
|
|
"predictions_testA = pd.Series(predictions_testA)\n",
|
|
"predictions_testA = predictions_testA"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('test-A/out.tsv', 'wt') as f:\n",
|
|
" for pred in predictions_testA:\n",
|
|
" f.write(str(pred)+'\\n')"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"interpreter": {
|
|
"hash": "f08154012ddadd8e950e6e9e035c7a7b32c136e7647e9b7c77e02eb723a8bedb"
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3.9.7 ('base')",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.7"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|