{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "PAM8swqfl3YC" }, "outputs": [], "source": [ "import itertools\n", "import lzma\n", "import regex as re\n", "import torch\n", "from torch import nn\n", "from torch.utils.data import IterableDataset, DataLoader\n", "from torchtext.vocab import build_vocab_from_iterator\n", "import pickle\n", "import os" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "52BQle50l92y", "outputId": "1f98398d-f385-4711-c2b7-3abe7418fbdb" }, "outputs": [], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": { "id": "PNb3_zqUl3YD" }, "source": [ "### Definitions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "b_6d7n2al3YE" }, "outputs": [], "source": [ "def clean_line(line: str):\n", " separated = line.split('\\t')\n", " prefix = separated[6].replace(r'\\n', ' ').strip()\n", " suffix = separated[7].replace(r'\\n', ' ').strip()\n", " return prefix + ' ' + suffix\n", "\n", "def get_words_from_line(line):\n", " line = clean_line(line)\n", " for word in line.split():\n", " yield word\n", "\n", "def get_word_lines_from_file(file_name):\n", " with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:\n", " for line in fid:\n", " yield get_words_from_line(line)\n", "\n", "\n", "def look_ahead_iterator(gen):\n", " prev = None\n", " for item in gen:\n", " if prev is not None:\n", " yield (prev, item)\n", " prev = item\n", "\n", "def predict(word: str, num_of_top: str) -> str:\n", " ixs = torch.tensor(vocab.forward([word])).to(device)\n", " out = model(ixs)\n", " top = torch.topk(out[0], num_of_top)\n", " top_indices = top.indices.tolist()\n", " top_probs = top.values.tolist()\n", " top_words = vocab.lookup_tokens(top_indices)\n", " zipped = list(zip(top_words, top_probs))\n", " if '' in [element[0] for element in zipped]:\n", " zipped = [(element[0] if element[0] != '' else '', element[1]) for element in zipped]\n", " zipped[-1] = ('', zipped[-1][1])\n", " else:\n", " zipped[-1] = ('', zipped[-1][1])\n", " return ' '.join([f'{element[0]}:{element[1]}' for element in zipped])\n", "\n", "def execute(path):\n", " with lzma.open(f'{path}/in.tsv.xz', 'rt', encoding='utf-8') as f, \\\n", " open(f'{path}/out.tsv', 'w', encoding='utf-8') as out:\n", " for line in f:\n", " prefix = line.split('\\t')[6]\n", " left = prefix.replace(r'\\n', ' ').split()[-1]\n", " result = predict(left, num_of_top)\n", " out.write(f\"{result}\\n\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZfV8fDhyl3YF" }, "outputs": [], "source": [ "class Bigrams(IterableDataset):\n", " def __init__(self, text_file, vocabulary_size):\n", " self.vocab = vocab\n", " self.vocab.set_default_index(self.vocab[''])\n", " self.vocabulary_size = vocabulary_size\n", " self.text_file = text_file\n", "\n", " def __iter__(self):\n", " return look_ahead_iterator(\n", " (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))\n", "\n", " \n", "class SimpleBigramNeuralLanguageModel(nn.Module):\n", " def __init__(self, vocabulary_size, embedding_size):\n", " super(SimpleBigramNeuralLanguageModel, self).__init__()\n", " self.model = nn.Sequential(\n", " nn.Embedding(vocabulary_size, embedding_size),\n", " nn.Linear(embedding_size, vocabulary_size),\n", " nn.Softmax()\n", " )\n", "\n", " def forward(self, x):\n", " return self.model(x)" ] }, { "cell_type": "markdown", "metadata": { "id": "W0O6U62El3YG" }, "source": [ "### Parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eUS-U3_6l3YG" }, "outputs": [], "source": [ "vocab_size = 10000\n", "embed_size = 250\n", "batch_size = 5000\n", "num_of_top = 10" ] }, { "cell_type": "markdown", "metadata": { "id": "CPeVRcYZl3YG" }, "source": [ "### Vocabulary building" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4wBx0OTal3YH" }, "outputs": [], "source": [ "if os.path.exists('./vocabulary.pickle'):\n", " with open('vocabulary.pickle', 'rb') as handle:\n", " vocab = pickle.load(handle)\n", "else:\n", " vocab = build_vocab_from_iterator(\n", " get_word_lines_from_file('./drive/MyDrive/ColabNotebooks/america/train/in.tsv.xz'),\n", " max_tokens = vocab_size,\n", " specials = [''])\n", "\n", " with open('vocabulary.pickle', 'wb') as handle:\n", " pickle.dump(vocab, handle, protocol=pickle.HIGHEST_PROTOCOL)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "oVMVipnhl3YH", "outputId": "e588d083-be33-4dce-e61c-b26e664b2c5f" }, "outputs": [], "source": [ "vocab.lookup_tokens([0, 1, 2, 3, 4, 4500])" ] }, { "cell_type": "markdown", "metadata": { "id": "1gJscHJUl3YI" }, "source": [ "### Training" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "W_OjBUInl3YI" }, "outputs": [], "source": [ "model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size)\n", "vocab.set_default_index(vocab[''])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "f373Kduzl3YI", "outputId": "0e6100df-d00e-4be3-83c4-cd2f671041e6" }, "outputs": [], "source": [ "#uczenie\n", "from torch.utils.data import DataLoader\n", "\n", "device = 'cuda'\n", "train_dataset = Bigrams('./drive/MyDrive/ColabNotebooks/america/train/in.tsv.xz', vocab_size)\n", "model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n", "data = DataLoader(train_dataset, batch_size=batch_size)\n", "optimizer = torch.optim.Adam(model.parameters())\n", "\n", "#funkcja kosztu\n", "criterion = torch.nn.NLLLoss()\n", "\n", "model.train()\n", "step = 0\n", "for x, y in data:\n", " x = x.to(device)\n", " y = y.to(device)\n", " optimizer.zero_grad()\n", " ypredicted = model(x)\n", " loss = criterion(torch.log(ypredicted), y)\n", " if step % 100 == 0:\n", " print(step, loss)\n", " step += 1\n", " loss.backward()\n", " optimizer.step()\n", "\n", "torch.save(model.state_dict(), 'model1.bin')\n" ] }, { "cell_type": "markdown", "metadata": { "id": "IHrqskyXl3YI" }, "source": [ "### Evaluation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "yK3oK65fl3YI", "outputId": "ee3e64a6-c361-4e96-cad0-82f2950827ca" }, "outputs": [], "source": [ "model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n", "model.load_state_dict(torch.load('model1.bin'))\n", "model.eval()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ihz4Px0bl3YJ" }, "outputs": [], "source": [ "execute('./drive/MyDrive/ColabNotebooks/america/dev-0')\n", "execute('./drive/MyDrive/ColabNotebooks/america/test-A')" ] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 0 }