ium_478839/ml_pytorch_mlflow.py

170 lines
5.1 KiB
Python
Raw Normal View History

2022-05-15 12:30:41 +02:00
import torch
import jovian
import torchvision
import matplotlib
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import torch.nn.functional as F
from torchvision.datasets.utils import download_url
from torch.utils.data import DataLoader, TensorDataset, random_split
import random
import os
import sys
import mlflow
from mlflow.models import infer_signature
from urllib.parse import urlparse
2022-05-15 13:24:18 +02:00
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
2022-05-15 12:30:41 +02:00
mlflow.set_experiment("s478839")
def my_config():
epochs = 1000
#load data
dataframe = pd.read_csv("understat.csv")
#choose columns
input_cols=list(dataframe.columns)[4:11]
output_cols = ['position']
input_cols, output_cols
def dataframe_to_arrays(dataframe):
dataframe_loc = dataframe.copy(deep=True)
inputs_array = dataframe_loc[input_cols].to_numpy()
targets_array = dataframe_loc[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array, targets_array = dataframe_to_arrays(dataframe)
inputs = torch.from_numpy(inputs_array).type(torch.float)
targets = torch.from_numpy(targets_array).type(torch.float)
dataset = TensorDataset(inputs, targets)
train_ds, val_ds = random_split(dataset, [548, 136])
batch_size=50
train_loader = DataLoader(train_ds, batch_size, shuffle=True)
val_loader = DataLoader(val_ds, batch_size)
class Model_xPosition(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size,output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
loss = F.l1_loss(out,targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
out = self(inputs)
loss = F.l1_loss(out,targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss']))
def evaluate(model, val_loader):
outputs = [model.validation_step(batch) for batch in val_loader]
return model.validation_epoch_end(outputs)
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
history = []
optimizer = opt_func(model.parameters(), lr)
for epoch in range(epochs):
for batch in train_loader:
loss = model.training_step(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
result = evaluate(model, val_loader)
model.epoch_end(epoch, result, epochs)
history.append(result)
return history
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(inputs)
prediction = predictions[0].detach()
return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n"
2022-05-15 14:19:02 +02:00
def prediction(input, model):
2022-05-15 12:30:41 +02:00
inputs = input.unsqueeze(0)
predictions = model(inputs)
predicted = predictions[0].detach()
return predicted
input_size = len(input_cols)
output_size = len(output_cols)
model=Model_xPosition()
lr = 1e-5
# epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 20
epochs = 1000
def my_main(epochs):
mlflow.log_param("epochs", epochs)
learning_proccess = fit(epochs, lr, model, train_loader, val_loader)
for i in random.sample(range(0, len(val_ds)), 10):
input_, target = val_ds[i]
print(predict_single(input_, target, model),end="")
expected = []
predicted = []
2022-05-15 22:08:21 +02:00
inputs = []
2022-05-15 12:30:41 +02:00
for i in range(0, len(val_ds), 1):
input_, target = val_ds[i]
expected.append(float(target))
2022-05-15 14:19:02 +02:00
predicted.append(float(prediction(input_, model)))
2022-05-15 22:20:20 +02:00
inputs.append(input_)
2022-05-15 22:22:05 +02:00
inputs = pd.DataFrame(inputs)
2022-05-15 12:30:41 +02:00
MSE = mean_squared_error(expected, predicted)
MAE = mean_absolute_error(expected, predicted)
mlflow.log_metric("MSE", MSE)
mlflow.log_metric("MAE", MAE)
with open("result.txt", "w+") as file:
for i in range(0, len(val_ds), 1):
input_, target = val_ds[i]
file.write(str(predict_single(input_, target, model)))
2022-05-15 22:00:38 +02:00
2022-05-15 22:08:21 +02:00
print(inputs)
2022-05-15 22:00:38 +02:00
2022-05-15 22:15:17 +02:00
input_example = inputs[0]
signature = infer_signature(inputs, expected)
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
if tracking_url_type_store != "file":
mlflow.pytorch.log_model(model, "model", registered_model_name="s478839", signature=siganture,
input_example=input_example)
else:
mlflow.pytorch.log_model(model, "model", signature=siganture, input_example=input_example)
mlflow.pytorch.save_model(model, "my_model", signature=siganture, input_example=input_example)
2022-05-15 14:19:02 +02:00
2022-05-15 12:30:41 +02:00
with mlflow.start_run() as run:
2022-05-15 14:19:02 +02:00
my_main(epochs)