209 lines
4.9 KiB
Python
209 lines
4.9 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
|
||
|
# In[1]:
|
||
|
|
||
|
|
||
|
import torch
|
||
|
import jovian
|
||
|
import torchvision
|
||
|
import matplotlib
|
||
|
import torch.nn as nn
|
||
|
import pandas as pd
|
||
|
import matplotlib.pyplot as plt
|
||
|
import seaborn as sns
|
||
|
import torch.nn.functional as F
|
||
|
from torchvision.datasets.utils import download_url
|
||
|
from torch.utils.data import DataLoader, TensorDataset, random_split
|
||
|
import random
|
||
|
import os
|
||
|
import sys
|
||
|
from sklearn.metrics import mean_squared_error
|
||
|
from sklearn.metrics import mean_absolute_error
|
||
|
|
||
|
|
||
|
# In[2]:
|
||
|
|
||
|
|
||
|
#load data
|
||
|
dataframe = pd.read_csv("understat.csv")
|
||
|
|
||
|
#choose columns
|
||
|
input_cols=list(dataframe.columns)[4:11]
|
||
|
output_cols = ['position']
|
||
|
input_cols, output_cols
|
||
|
|
||
|
|
||
|
# In[3]:
|
||
|
|
||
|
|
||
|
def dataframe_to_arrays(dataframe):
|
||
|
dataframe_loc = dataframe.copy(deep=True)
|
||
|
inputs_array = dataframe_loc[input_cols].to_numpy()
|
||
|
targets_array = dataframe_loc[output_cols].to_numpy()
|
||
|
return inputs_array, targets_array
|
||
|
|
||
|
inputs_array, targets_array = dataframe_to_arrays(dataframe)
|
||
|
|
||
|
inputs = torch.from_numpy(inputs_array).type(torch.float)
|
||
|
targets = torch.from_numpy(targets_array).type(torch.float)
|
||
|
|
||
|
dataset = TensorDataset(inputs, targets)
|
||
|
|
||
|
|
||
|
# In[4]:
|
||
|
|
||
|
|
||
|
train_ds, val_ds = random_split(dataset, [548, 136])
|
||
|
batch_size=50
|
||
|
train_loader = DataLoader(train_ds, batch_size, shuffle=True)
|
||
|
val_loader = DataLoader(val_ds, batch_size)
|
||
|
|
||
|
|
||
|
# In[5]:
|
||
|
|
||
|
|
||
|
class Model_xPosition(nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.linear = nn.Linear(input_size,output_size)
|
||
|
|
||
|
def forward(self, xb):
|
||
|
out = self.linear(xb)
|
||
|
return out
|
||
|
|
||
|
def training_step(self, batch):
|
||
|
inputs, targets = batch
|
||
|
# Generate predictions
|
||
|
out = self(inputs)
|
||
|
# Calcuate loss
|
||
|
loss = F.l1_loss(out,targets)
|
||
|
return loss
|
||
|
|
||
|
def validation_step(self, batch):
|
||
|
inputs, targets = batch
|
||
|
out = self(inputs)
|
||
|
loss = F.l1_loss(out,targets)
|
||
|
return {'val_loss': loss.detach()}
|
||
|
|
||
|
def validation_epoch_end(self, outputs):
|
||
|
batch_losses = [x['val_loss'] for x in outputs]
|
||
|
epoch_loss = torch.stack(batch_losses).mean()
|
||
|
return {'val_loss': epoch_loss.item()}
|
||
|
|
||
|
def epoch_end(self, epoch, result, num_epochs):
|
||
|
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
|
||
|
print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss']))
|
||
|
|
||
|
|
||
|
def evaluate(model, val_loader):
|
||
|
outputs = [model.validation_step(batch) for batch in val_loader]
|
||
|
return model.validation_epoch_end(outputs)
|
||
|
|
||
|
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
|
||
|
history = []
|
||
|
optimizer = opt_func(model.parameters(), lr)
|
||
|
for epoch in range(epochs):
|
||
|
for batch in train_loader:
|
||
|
loss = model.training_step(batch)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
optimizer.zero_grad()
|
||
|
result = evaluate(model, val_loader)
|
||
|
model.epoch_end(epoch, result, epochs)
|
||
|
history.append(result)
|
||
|
return history
|
||
|
|
||
|
|
||
|
# In[6]:
|
||
|
|
||
|
|
||
|
input_size = len(input_cols)
|
||
|
output_size = len(output_cols)
|
||
|
model=Model_xPosition()
|
||
|
|
||
|
|
||
|
# In[7]:
|
||
|
|
||
|
|
||
|
epochs = 1000
|
||
|
lr = 1e-5
|
||
|
learning_proccess = fit(epochs, lr, model, train_loader, val_loader)
|
||
|
|
||
|
|
||
|
# In[8]:
|
||
|
|
||
|
|
||
|
def predict_single(input, target, model):
|
||
|
inputs = input.unsqueeze(0)
|
||
|
predictions = model(inputs)
|
||
|
prediction = predictions[0].detach()
|
||
|
|
||
|
return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n"
|
||
|
|
||
|
|
||
|
# In[9]:
|
||
|
|
||
|
|
||
|
def prediction(input, target, model):
|
||
|
inputs = input.unsqueeze(0)
|
||
|
predictions = model(inputs)
|
||
|
predicted = predictions[0].detach()
|
||
|
return predicted
|
||
|
|
||
|
|
||
|
# In[10]:
|
||
|
|
||
|
|
||
|
with open("result.txt", "a+") as file:
|
||
|
for i in range(0, len(val_ds), 1):
|
||
|
input_, target = val_ds[i]
|
||
|
file.write(str(predict_single(input_, target, model)))
|
||
|
|
||
|
|
||
|
# In[11]:
|
||
|
|
||
|
|
||
|
expected = []
|
||
|
predicted = []
|
||
|
for i in range(0, len(val_ds), 1):
|
||
|
input_, target = val_ds[i]
|
||
|
expected.append(float(target))
|
||
|
predicted.append(float(prediction(input_, target, model)))
|
||
|
|
||
|
MSE = mean_squared_error(expected, predicted)
|
||
|
MAE = mean_absolute_error(expected, predicted)
|
||
|
|
||
|
with open("metrics.txt", "a+") as file:
|
||
|
file.write("Mean squared error: MSE = "+ str(MSE) + "\n")
|
||
|
file.write("Mean absolute error: MAE = "+ str(MAE)+ "\n")
|
||
|
|
||
|
with open("MSE.txt", "a+") as file:
|
||
|
file.write(str(MSE) + "\n")
|
||
|
|
||
|
|
||
|
# In[12]:
|
||
|
|
||
|
|
||
|
with open('MSE.txt') as file:
|
||
|
y_MSE = [float(line) for line in file if line]
|
||
|
x_builds = list(range(1, len(y_MSE) + 1))
|
||
|
|
||
|
|
||
|
# In[13]:
|
||
|
|
||
|
|
||
|
plt.xlabel('Number of builds')
|
||
|
plt.ylabel('MSE')
|
||
|
plt.plot(x_builds, y_MSE, label='Mean squared error')
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
plt.savefig('RMSplot.png')
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
# get_ipython().system('jupyter nbconvert --to script ml_pytorch.ipynb')
|
||
|
|