2022-06-25 15:26:56 +02:00
|
|
|
import json
|
|
|
|
import mlflow
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
#input = sys.argv[1]
|
|
|
|
|
2022-06-26 12:47:01 +02:00
|
|
|
logged_model = 'mlruns/1/70439eb482b54d56b54b0ecc6f1ca96f/artifacts/s444409'
|
|
|
|
loaded_model = mlflow.pyfunc.load_model(logged_model)
|
2022-06-25 15:26:56 +02:00
|
|
|
|
|
|
|
|
|
|
|
with open('input_example.json') as f:
|
|
|
|
data = json.load(f)
|
|
|
|
input_example = np.array([data['inputs'][0]], dtype=np.float32)
|
|
|
|
|
|
|
|
print(f'Prediction: {loaded_model.predict(input_example)}')
|