diff --git a/ml_pytorch.py b/ml_pytorch.py index 9f0b449..9d59a7b 100644 --- a/ml_pytorch.py +++ b/ml_pytorch.py @@ -1,159 +1,159 @@ -#!/usr/bin/env python -# coding: utf-8 - -# In[1]: - - -import torch -import jovian -import torchvision -import matplotlib -import torch.nn as nn -import pandas as pd -import matplotlib.pyplot as plt -import seaborn as sns -import torch.nn.functional as F -from torchvision.datasets.utils import download_url -from torch.utils.data import DataLoader, TensorDataset, random_split -import random -import os -import sys - - -# In[2]: - - -#load data -dataframe = pd.read_csv("understat.csv") - -#choose columns -input_cols=list(dataframe.columns)[4:11] -output_cols = ['position'] -input_cols, output_cols - - -# In[4]: - - -def dataframe_to_arrays(dataframe): - dataframe_loc = dataframe.copy(deep=True) - inputs_array = dataframe_loc[input_cols].to_numpy() - targets_array = dataframe_loc[output_cols].to_numpy() - return inputs_array, targets_array - -inputs_array, targets_array = dataframe_to_arrays(dataframe) - -inputs = torch.from_numpy(inputs_array).type(torch.float) -targets = torch.from_numpy(targets_array).type(torch.float) - -dataset = TensorDataset(inputs, targets) - - -# In[7]: - - -train_ds, val_ds = random_split(dataset, [548, 136]) -batch_size=50 -train_loader = DataLoader(train_ds, batch_size, shuffle=True) -val_loader = DataLoader(val_ds, batch_size) - - -# In[8]: - - -class Model_xPosition(nn.Module): - def __init__(self): - super().__init__() - self.linear = nn.Linear(input_size,output_size) - - def forward(self, xb): - out = self.linear(xb) - return out - - def training_step(self, batch): - inputs, targets = batch - # Generate predictions - out = self(inputs) - # Calcuate loss - loss = F.l1_loss(out,targets) - return loss - - def validation_step(self, batch): - inputs, targets = batch - out = self(inputs) - loss = F.l1_loss(out,targets) - return {'val_loss': loss.detach()} - - def validation_epoch_end(self, outputs): - batch_losses = [x['val_loss'] for x in outputs] - epoch_loss = torch.stack(batch_losses).mean() - return {'val_loss': epoch_loss.item()} - - def epoch_end(self, epoch, result, num_epochs): - if (epoch+1) % 100 == 0 or epoch == num_epochs-1: - print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss'])) - - -def evaluate(model, val_loader): - outputs = [model.validation_step(batch) for batch in val_loader] - return model.validation_epoch_end(outputs) - -def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): - history = [] - optimizer = opt_func(model.parameters(), lr) - for epoch in range(epochs): - for batch in train_loader: - loss = model.training_step(batch) - loss.backward() - optimizer.step() - optimizer.zero_grad() - result = evaluate(model, val_loader) - model.epoch_end(epoch, result, epochs) - history.append(result) - return history - - -# In[9]: - - -input_size = len(input_cols) -output_size = len(output_cols) -model=Model_xPosition() - - -# In[11]: - - -epochs = 2000 -lr = 1e-5 -learning_proccess = fit(epochs, lr, model, train_loader, val_loader) - - -# In[13]: - - -def predict_single(input, target, model): - inputs = input.unsqueeze(0) - predictions = model(inputs) - prediction = predictions[0].detach() - - return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n" - - -# In[14]: - - -for i in random.sample(range(0, len(val_ds)), 10): - input_, target = val_ds[i] - print(predict_single(input_, target, model),end="") - - -# In[15]: - - -with open("result.txt", "w+") as file: - for i in range(0, len(val_ds), 1): - input_, target = val_ds[i] - file.write(str(predict_single(input_, target, model))) - - +#!/usr/bin/env python +# coding: utf-8 + +# In[1]: + + +import torch +import jovian +import torchvision +import matplotlib +import torch.nn as nn +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import torch.nn.functional as F +from torchvision.datasets.utils import download_url +from torch.utils.data import DataLoader, TensorDataset, random_split +import random +import os +import sys + + +# In[2]: + + +#load data +dataframe = pd.read_csv("understat.csv") + +#choose columns +input_cols=list(dataframe.columns)[4:11] +output_cols = ['position'] +input_cols, output_cols + + +# In[4]: + + +def dataframe_to_arrays(dataframe): + dataframe_loc = dataframe.copy(deep=True) + inputs_array = dataframe_loc[input_cols].to_numpy() + targets_array = dataframe_loc[output_cols].to_numpy() + return inputs_array, targets_array + +inputs_array, targets_array = dataframe_to_arrays(dataframe) + +inputs = torch.from_numpy(inputs_array).type(torch.float) +targets = torch.from_numpy(targets_array).type(torch.float) + +dataset = TensorDataset(inputs, targets) + + +# In[7]: + + +train_ds, val_ds = random_split(dataset, [548, 136]) +batch_size=50 +train_loader = DataLoader(train_ds, batch_size, shuffle=True) +val_loader = DataLoader(val_ds, batch_size) + + +# In[8]: + + +class Model_xPosition(nn.Module): + def __init__(self): + super().__init__() + self.linear = nn.Linear(input_size,output_size) + + def forward(self, xb): + out = self.linear(xb) + return out + + def training_step(self, batch): + inputs, targets = batch + # Generate predictions + out = self(inputs) + # Calcuate loss + loss = F.l1_loss(out,targets) + return loss + + def validation_step(self, batch): + inputs, targets = batch + out = self(inputs) + loss = F.l1_loss(out,targets) + return {'val_loss': loss.detach()} + + def validation_epoch_end(self, outputs): + batch_losses = [x['val_loss'] for x in outputs] + epoch_loss = torch.stack(batch_losses).mean() + return {'val_loss': epoch_loss.item()} + + def epoch_end(self, epoch, result, num_epochs): + if (epoch+1) % 100 == 0 or epoch == num_epochs-1: + print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss'])) + + +def evaluate(model, val_loader): + outputs = [model.validation_step(batch) for batch in val_loader] + return model.validation_epoch_end(outputs) + +def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): + history = [] + optimizer = opt_func(model.parameters(), lr) + for epoch in range(epochs): + for batch in train_loader: + loss = model.training_step(batch) + loss.backward() + optimizer.step() + optimizer.zero_grad() + result = evaluate(model, val_loader) + model.epoch_end(epoch, result, epochs) + history.append(result) + return history + + +# In[9]: + + +input_size = len(input_cols) +output_size = len(output_cols) +model=Model_xPosition() + + +# In[11]: + + +epochs = 1000 +lr = 1e-5 +learning_proccess = fit(epochs, lr, model, train_loader, val_loader) + + +# In[13]: + + +def predict_single(input, target, model): + inputs = input.unsqueeze(0) + predictions = model(inputs) + prediction = predictions[0].detach() + + return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n" + + +# In[14]: + + +for i in random.sample(range(0, len(val_ds)), 10): + input_, target = val_ds[i] + print(predict_single(input_, target, model),end="") + + +# In[15]: + + +with open("result.txt", "w+") as file: + for i in range(0, len(val_ds), 1): + input_, target = val_ds[i] + file.write(str(predict_single(input_, target, model))) + +