update ml_pytorch
This commit is contained in:
parent
eb6d2ec4d0
commit
c29b8ef427
309
ml_pytorch.ipynb
Normal file
309
ml_pytorch.ipynb
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "98cddc6a-2ce1-4933-a2b7-96d2c2d197f4",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"application/javascript": [
|
||||||
|
"if (window.IPython && IPython.notebook.kernel) IPython.notebook.kernel.execute('jovian.utils.jupyter.get_notebook_name_saved = lambda: \"' + IPython.notebook.notebook_name + '\"')"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"<IPython.core.display.Javascript object>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "display_data"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import torch\n",
|
||||||
|
"import jovian\n",
|
||||||
|
"import torchvision\n",
|
||||||
|
"import matplotlib\n",
|
||||||
|
"import torch.nn as nn\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"import seaborn as sns\n",
|
||||||
|
"import torch.nn.functional as F\n",
|
||||||
|
"from torchvision.datasets.utils import download_url\n",
|
||||||
|
"from torch.utils.data import DataLoader, TensorDataset, random_split\n",
|
||||||
|
"import random\n",
|
||||||
|
"import os\n",
|
||||||
|
"import sys"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "7bb63556-d009-4d9f-9de0-033a30ad3fc4",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"(['matches', 'wins', 'draws', 'loses', 'scored', 'missed', 'pts'],\n",
|
||||||
|
" ['position'])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#load data\n",
|
||||||
|
"dataframe = pd.read_csv(\"understat.csv\")\n",
|
||||||
|
"\n",
|
||||||
|
"#choose columns\n",
|
||||||
|
"input_cols=list(dataframe.columns)[4:11]\n",
|
||||||
|
"output_cols = ['position']\n",
|
||||||
|
"input_cols, output_cols"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "c8151c46-c234-42b7-a786-50c73e3aa2f5",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def dataframe_to_arrays(dataframe):\n",
|
||||||
|
" dataframe_loc = dataframe.copy(deep=True)\n",
|
||||||
|
" inputs_array = dataframe_loc[input_cols].to_numpy()\n",
|
||||||
|
" targets_array = dataframe_loc[output_cols].to_numpy()\n",
|
||||||
|
" return inputs_array, targets_array\n",
|
||||||
|
"\n",
|
||||||
|
"inputs_array, targets_array = dataframe_to_arrays(dataframe)\n",
|
||||||
|
"\n",
|
||||||
|
"inputs = torch.from_numpy(inputs_array).type(torch.float)\n",
|
||||||
|
"targets = torch.from_numpy(targets_array).type(torch.float)\n",
|
||||||
|
"\n",
|
||||||
|
"dataset = TensorDataset(inputs, targets)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "8c89947b-c2fe-407d-9588-3f0087df5955",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"train_ds, val_ds = random_split(dataset, [548, 136])\n",
|
||||||
|
"batch_size=50\n",
|
||||||
|
"train_loader = DataLoader(train_ds, batch_size, shuffle=True)\n",
|
||||||
|
"val_loader = DataLoader(val_ds, batch_size)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"id": "3b1426a0-5b15-46f8-aea9-871462ca9467",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"class Model_xPosition(nn.Module):\n",
|
||||||
|
" def __init__(self):\n",
|
||||||
|
" super().__init__()\n",
|
||||||
|
" self.linear = nn.Linear(input_size,output_size) \n",
|
||||||
|
" \n",
|
||||||
|
" def forward(self, xb): \n",
|
||||||
|
" out = self.linear(xb)\n",
|
||||||
|
" return out\n",
|
||||||
|
" \n",
|
||||||
|
" def training_step(self, batch):\n",
|
||||||
|
" inputs, targets = batch \n",
|
||||||
|
" # Generate predictions\n",
|
||||||
|
" out = self(inputs) \n",
|
||||||
|
" # Calcuate loss\n",
|
||||||
|
" loss = F.l1_loss(out,targets) \n",
|
||||||
|
" return loss\n",
|
||||||
|
" \n",
|
||||||
|
" def validation_step(self, batch):\n",
|
||||||
|
" inputs, targets = batch\n",
|
||||||
|
" out = self(inputs)\n",
|
||||||
|
" loss = F.l1_loss(out,targets) \n",
|
||||||
|
" return {'val_loss': loss.detach()}\n",
|
||||||
|
" \n",
|
||||||
|
" def validation_epoch_end(self, outputs):\n",
|
||||||
|
" batch_losses = [x['val_loss'] for x in outputs]\n",
|
||||||
|
" epoch_loss = torch.stack(batch_losses).mean() \n",
|
||||||
|
" return {'val_loss': epoch_loss.item()}\n",
|
||||||
|
" \n",
|
||||||
|
" def epoch_end(self, epoch, result, num_epochs):\n",
|
||||||
|
" if (epoch+1) % 100 == 0 or epoch == num_epochs-1:\n",
|
||||||
|
" print(\"Epoch {} loss: {:.4f}\".format(epoch+1, result['val_loss']))\n",
|
||||||
|
" \n",
|
||||||
|
" \n",
|
||||||
|
"def evaluate(model, val_loader):\n",
|
||||||
|
" outputs = [model.validation_step(batch) for batch in val_loader]\n",
|
||||||
|
" return model.validation_epoch_end(outputs)\n",
|
||||||
|
"\n",
|
||||||
|
"def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):\n",
|
||||||
|
" history = []\n",
|
||||||
|
" optimizer = opt_func(model.parameters(), lr)\n",
|
||||||
|
" for epoch in range(epochs):\n",
|
||||||
|
" for batch in train_loader:\n",
|
||||||
|
" loss = model.training_step(batch)\n",
|
||||||
|
" loss.backward()\n",
|
||||||
|
" optimizer.step()\n",
|
||||||
|
" optimizer.zero_grad()\n",
|
||||||
|
" result = evaluate(model, val_loader)\n",
|
||||||
|
" model.epoch_end(epoch, result, epochs)\n",
|
||||||
|
" history.append(result)\n",
|
||||||
|
" return history"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "f2e22e9a-8724-4084-b706-0be266846c05",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"input_size = len(input_cols)\n",
|
||||||
|
"output_size = len(output_cols)\n",
|
||||||
|
"model=Model_xPosition()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "efacafe4-797a-4588-b0d8-2e4d883e639a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Epoch 100 loss: 6.2637\n",
|
||||||
|
"Epoch 200 loss: 2.9712\n",
|
||||||
|
"Epoch 300 loss: 1.9724\n",
|
||||||
|
"Epoch 400 loss: 1.9376\n",
|
||||||
|
"Epoch 500 loss: 1.9199\n",
|
||||||
|
"Epoch 600 loss: 1.9033\n",
|
||||||
|
"Epoch 700 loss: 1.8863\n",
|
||||||
|
"Epoch 800 loss: 1.8703\n",
|
||||||
|
"Epoch 900 loss: 1.8552\n",
|
||||||
|
"Epoch 1000 loss: 1.8405\n",
|
||||||
|
"Epoch 1100 loss: 1.8267\n",
|
||||||
|
"Epoch 1200 loss: 1.8134\n",
|
||||||
|
"Epoch 1300 loss: 1.8010\n",
|
||||||
|
"Epoch 1400 loss: 1.7876\n",
|
||||||
|
"Epoch 1500 loss: 1.7748\n",
|
||||||
|
"Epoch 1600 loss: 1.7626\n",
|
||||||
|
"Epoch 1700 loss: 1.7497\n",
|
||||||
|
"Epoch 1800 loss: 1.7387\n",
|
||||||
|
"Epoch 1900 loss: 1.7270\n",
|
||||||
|
"Epoch 2000 loss: 1.7162\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"epochs = 2000\n",
|
||||||
|
"lr = 1e-5\n",
|
||||||
|
"learning_proccess = fit(epochs, lr, model, train_loader, val_loader)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "7007ab5a-dc79-4321-beed-cd54dd197858",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def predict_single(input, target, model):\n",
|
||||||
|
" inputs = input.unsqueeze(0)\n",
|
||||||
|
" predictions = model(inputs)\n",
|
||||||
|
" prediction = predictions[0].detach()\n",
|
||||||
|
"\n",
|
||||||
|
" return \"Target: \"+str(target)+\" Predicted: \"+str(prediction)+\"\\n\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "1e6ed168-2cdc-45dc-a0ff-e147ac4c46be",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Target: tensor([16.]) Predicted: tensor([13.5861])\n",
|
||||||
|
"Target: tensor([14.]) Predicted: tensor([10.1553])\n",
|
||||||
|
"Target: tensor([19.]) Predicted: tensor([16.5709])\n",
|
||||||
|
"Target: tensor([18.]) Predicted: tensor([18.5809])\n",
|
||||||
|
"Target: tensor([2.]) Predicted: tensor([2.5676])\n",
|
||||||
|
"Target: tensor([14.]) Predicted: tensor([13.4065])\n",
|
||||||
|
"Target: tensor([11.]) Predicted: tensor([11.6196])\n",
|
||||||
|
"Target: tensor([13.]) Predicted: tensor([13.1022])\n",
|
||||||
|
"Target: tensor([17.]) Predicted: tensor([14.5672])\n",
|
||||||
|
"Target: tensor([1.]) Predicted: tensor([-1.9346])\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"for i in random.sample(range(0, len(val_ds)), 10):\n",
|
||||||
|
" input_, target = val_ds[i]\n",
|
||||||
|
" print(predict_single(input_, target, model),end=\"\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"id": "50c62065-5094-4595-995c-6d0b71f1f28a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"with open(\"result.txt\", \"w+\") as file:\n",
|
||||||
|
" for i in range(0, len(val_ds), 1):\n",
|
||||||
|
" input_, target = val_ds[i]\n",
|
||||||
|
" file.write(str(predict_single(input_, target, model)))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "8dffe789-1ad5-44f1-8f21-92b9c89ed974",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[NbConvertApp] Converting notebook ml_pytorch.ipynb to script\n",
|
||||||
|
"[NbConvertApp] Writing 3828 bytes to ml_pytorch.py\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"!jupyter nbconvert --to script ml_pytorch.ipynb"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
182
ml_pytorch.py
182
ml_pytorch.py
@ -1,29 +1,73 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
|
|
||||||
# In[233]:
|
# In[1]:
|
||||||
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import jovian
|
||||||
|
import torchvision
|
||||||
|
import matplotlib
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import matplotlib.pyplot as plt
|
||||||
import random
|
import seaborn as sns
|
||||||
from sklearn.model_selection import train_test_split
|
import torch.nn.functional as F
|
||||||
|
from torchvision.datasets.utils import download_url
|
||||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
from torch.utils.data import DataLoader, TensorDataset, random_split
|
||||||
from sklearn import preprocessing
|
import random
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
class Model(nn.Module):
|
|
||||||
|
# In[2]:
|
||||||
|
|
||||||
|
|
||||||
|
#load data
|
||||||
|
dataframe = pd.read_csv("understat.csv")
|
||||||
|
|
||||||
|
#choose columns
|
||||||
|
input_cols=list(dataframe.columns)[4:11]
|
||||||
|
output_cols = ['position']
|
||||||
|
input_cols, output_cols
|
||||||
|
|
||||||
|
|
||||||
|
# In[4]:
|
||||||
|
|
||||||
|
|
||||||
|
def dataframe_to_arrays(dataframe):
|
||||||
|
dataframe_loc = dataframe.copy(deep=True)
|
||||||
|
inputs_array = dataframe_loc[input_cols].to_numpy()
|
||||||
|
targets_array = dataframe_loc[output_cols].to_numpy()
|
||||||
|
return inputs_array, targets_array
|
||||||
|
|
||||||
|
inputs_array, targets_array = dataframe_to_arrays(dataframe)
|
||||||
|
|
||||||
|
inputs = torch.from_numpy(inputs_array).type(torch.float)
|
||||||
|
targets = torch.from_numpy(targets_array).type(torch.float)
|
||||||
|
|
||||||
|
dataset = TensorDataset(inputs, targets)
|
||||||
|
|
||||||
|
|
||||||
|
# In[7]:
|
||||||
|
|
||||||
|
|
||||||
|
train_ds, val_ds = random_split(dataset, [548, 136])
|
||||||
|
batch_size=50
|
||||||
|
train_loader = DataLoader(train_ds, batch_size, shuffle=True)
|
||||||
|
val_loader = DataLoader(val_ds, batch_size)
|
||||||
|
|
||||||
|
|
||||||
|
# In[8]:
|
||||||
|
|
||||||
|
|
||||||
|
class Model_xPosition(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# self.fc1 = nn.Linear(2, 60)
|
self.linear = nn.Linear(input_size,output_size)
|
||||||
# self.fc2 = nn.Linear(60, 30)
|
|
||||||
# self.out = nn.Linear(30, 1)
|
|
||||||
self.linear = nn.Linear(2, 616)
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, xb):
|
||||||
out = torch.sigmoid(self.linear(x))
|
out = self.linear(xb)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def training_step(self, batch):
|
def training_step(self, batch):
|
||||||
@ -36,9 +80,7 @@ class Model(nn.Module):
|
|||||||
|
|
||||||
def validation_step(self, batch):
|
def validation_step(self, batch):
|
||||||
inputs, targets = batch
|
inputs, targets = batch
|
||||||
# Generate predictions
|
|
||||||
out = self(inputs)
|
out = self(inputs)
|
||||||
# Calculate loss
|
|
||||||
loss = F.l1_loss(out,targets)
|
loss = F.l1_loss(out,targets)
|
||||||
return {'val_loss': loss.detach()}
|
return {'val_loss': loss.detach()}
|
||||||
|
|
||||||
@ -48,71 +90,8 @@ class Model(nn.Module):
|
|||||||
return {'val_loss': epoch_loss.item()}
|
return {'val_loss': epoch_loss.item()}
|
||||||
|
|
||||||
def epoch_end(self, epoch, result, num_epochs):
|
def epoch_end(self, epoch, result, num_epochs):
|
||||||
# Print result every 100th epoch
|
|
||||||
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
|
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
|
||||||
print("Epoch [{}], val_loss: {:.4f}".format(epoch+1, result['val_loss']))
|
print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss']))
|
||||||
|
|
||||||
|
|
||||||
# In[234]:
|
|
||||||
|
|
||||||
|
|
||||||
data = pd.read_csv('understat.csv')
|
|
||||||
|
|
||||||
|
|
||||||
# In[235]:
|
|
||||||
|
|
||||||
|
|
||||||
training_data = data.sample(frac=0.9, random_state=25)
|
|
||||||
testing_data = data.drop(training_data.index)
|
|
||||||
|
|
||||||
|
|
||||||
# In[236]:
|
|
||||||
|
|
||||||
|
|
||||||
train_set = training_data[['matches', 'wins', 'position']]
|
|
||||||
test_set = testing_data[['matches', 'wins', 'position']]
|
|
||||||
|
|
||||||
|
|
||||||
# In[237]:
|
|
||||||
|
|
||||||
|
|
||||||
# Zamiana danych na tensory
|
|
||||||
X_train = train_set[['matches', 'wins']].to_numpy()
|
|
||||||
X_test = test_set[['matches', 'wins']].to_numpy()
|
|
||||||
y_train = train_set['position'].to_numpy()
|
|
||||||
y_test = test_set['position'].to_numpy()
|
|
||||||
|
|
||||||
X_train = torch.FloatTensor(X_train)
|
|
||||||
X_test = torch.FloatTensor(X_test)
|
|
||||||
y_train = torch.LongTensor(y_train)
|
|
||||||
y_test = torch.LongTensor(y_test)
|
|
||||||
|
|
||||||
|
|
||||||
# In[238]:
|
|
||||||
|
|
||||||
|
|
||||||
train_dataset = TensorDataset(X_train, y_train)
|
|
||||||
test_dataset = TensorDataset(X_test, y_test)
|
|
||||||
|
|
||||||
|
|
||||||
# In[239]:
|
|
||||||
|
|
||||||
|
|
||||||
batch_size=50
|
|
||||||
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
|
|
||||||
test_loader = DataLoader(test_dataset, batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
# In[240]:
|
|
||||||
|
|
||||||
|
|
||||||
# Hiperparametry
|
|
||||||
model = Model()
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
|
||||||
|
|
||||||
|
|
||||||
# In[241]:
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate(model, val_loader):
|
def evaluate(model, val_loader):
|
||||||
@ -134,34 +113,23 @@ def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
|
|||||||
return history
|
return history
|
||||||
|
|
||||||
|
|
||||||
# In[242]:
|
# In[9]:
|
||||||
|
|
||||||
|
|
||||||
epochs = 1000
|
input_size = len(input_cols)
|
||||||
|
output_size = len(output_cols)
|
||||||
def print_(loss):
|
model=Model_xPosition()
|
||||||
print ("The loss calculated: ", loss)
|
|
||||||
|
|
||||||
|
|
||||||
|
# In[11]:
|
||||||
# In[243]:
|
|
||||||
|
|
||||||
|
|
||||||
for epoch in range(1, epochs+1):
|
epochs = 2000
|
||||||
|
lr = 1e-5
|
||||||
y_pred = model(X_train)
|
learning_proccess = fit(epochs, lr, model, train_loader, val_loader)
|
||||||
loss = loss_fn(y_pred, y_train)
|
|
||||||
if epoch%100 == 0:
|
|
||||||
print ("Epoch #",epoch)
|
|
||||||
print_(loss.item())
|
|
||||||
|
|
||||||
# Zero gradients
|
|
||||||
optimizer.zero_grad()
|
|
||||||
loss.backward() # Gradients
|
|
||||||
optimizer.step() # Update
|
|
||||||
|
|
||||||
|
|
||||||
# In[244]:
|
# In[13]:
|
||||||
|
|
||||||
|
|
||||||
def predict_single(input, target, model):
|
def predict_single(input, target, model):
|
||||||
@ -169,23 +137,23 @@ def predict_single(input, target, model):
|
|||||||
predictions = model(inputs)
|
predictions = model(inputs)
|
||||||
prediction = predictions[0].detach()
|
prediction = predictions[0].detach()
|
||||||
|
|
||||||
return "Target: "+str(target)+"----- Prediction: "+str(prediction)+"\n"
|
return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n"
|
||||||
|
|
||||||
|
|
||||||
# In[245]:
|
# In[14]:
|
||||||
|
|
||||||
|
|
||||||
for i in random.sample(range(0, len(test_dataset)), 10):
|
for i in random.sample(range(0, len(val_ds)), 10):
|
||||||
input_, target = test_dataset[i]
|
input_, target = val_ds[i]
|
||||||
print(predict_single(input_, target, model),end="")
|
print(predict_single(input_, target, model),end="")
|
||||||
|
|
||||||
|
|
||||||
|
# In[15]:
|
||||||
# In[246]:
|
|
||||||
|
|
||||||
|
|
||||||
with open("result.txt", "w+") as file:
|
with open("result.txt", "w+") as file:
|
||||||
for i in range(0, len(test_dataset), 1):
|
for i in range(0, len(val_ds), 1):
|
||||||
input_, target = test_dataset[i]
|
input_, target = val_ds[i]
|
||||||
file.write(str(predict_single(input_, target, model)))
|
file.write(str(predict_single(input_, target, model)))
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user