diff --git a/ml_pytorch_mlflow.py b/ml_pytorch_mlflow.py new file mode 100644 index 0000000..edf31ad --- /dev/null +++ b/ml_pytorch_mlflow.py @@ -0,0 +1,152 @@ +import torch +import jovian +import torchvision +import matplotlib +import torch.nn as nn +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns +import torch.nn.functional as F +from torchvision.datasets.utils import download_url +from torch.utils.data import DataLoader, TensorDataset, random_split +import random +import os +import sys +import mlflow +from mlflow.models import infer_signature +from urllib.parse import urlparse + +mlflow.set_experiment("s478839") + +def my_config(): + epochs = 1000 + +#load data +dataframe = pd.read_csv("understat.csv") + +#choose columns +input_cols=list(dataframe.columns)[4:11] +output_cols = ['position'] +input_cols, output_cols + +def dataframe_to_arrays(dataframe): + dataframe_loc = dataframe.copy(deep=True) + inputs_array = dataframe_loc[input_cols].to_numpy() + targets_array = dataframe_loc[output_cols].to_numpy() + return inputs_array, targets_array + +inputs_array, targets_array = dataframe_to_arrays(dataframe) + +inputs = torch.from_numpy(inputs_array).type(torch.float) +targets = torch.from_numpy(targets_array).type(torch.float) + +dataset = TensorDataset(inputs, targets) + +train_ds, val_ds = random_split(dataset, [548, 136]) +batch_size=50 +train_loader = DataLoader(train_ds, batch_size, shuffle=True) +val_loader = DataLoader(val_ds, batch_size) + +class Model_xPosition(nn.Module): + def __init__(self): + super().__init__() + self.linear = nn.Linear(input_size,output_size) + + def forward(self, xb): + out = self.linear(xb) + return out + + def training_step(self, batch): + inputs, targets = batch + # Generate predictions + out = self(inputs) + # Calcuate loss + loss = F.l1_loss(out,targets) + return loss + + def validation_step(self, batch): + inputs, targets = batch + out = self(inputs) + loss = F.l1_loss(out,targets) + return {'val_loss': loss.detach()} + + def validation_epoch_end(self, outputs): + batch_losses = [x['val_loss'] for x in outputs] + epoch_loss = torch.stack(batch_losses).mean() + return {'val_loss': epoch_loss.item()} + + def epoch_end(self, epoch, result, num_epochs): + if (epoch+1) % 100 == 0 or epoch == num_epochs-1: + print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss'])) + + +def evaluate(model, val_loader): + outputs = [model.validation_step(batch) for batch in val_loader] + return model.validation_epoch_end(outputs) + +def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): + history = [] + optimizer = opt_func(model.parameters(), lr) + for epoch in range(epochs): + for batch in train_loader: + loss = model.training_step(batch) + loss.backward() + optimizer.step() + optimizer.zero_grad() + result = evaluate(model, val_loader) + model.epoch_end(epoch, result, epochs) + history.append(result) + return history + +def predict_single(input, target, model): + inputs = input.unsqueeze(0) + predictions = model(inputs) + prediction = predictions[0].detach() + + return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n" + +def prediction(input, target, model): + inputs = input.unsqueeze(0) + predictions = model(inputs) + predicted = predictions[0].detach() + return predicted + +input_size = len(input_cols) +output_size = len(output_cols) +model=Model_xPosition() +lr = 1e-5 + +# epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 20 +epochs = 1000 + +def my_main(epochs): + mlflow.log_param("epochs", epochs) + learning_proccess = fit(epochs, lr, model, train_loader, val_loader) + for i in random.sample(range(0, len(val_ds)), 10): + input_, target = val_ds[i] + print(predict_single(input_, target, model),end="") + + expected = [] + predicted = [] + for i in range(0, len(val_ds), 1): + input_, target = val_ds[i] + expected.append(float(target)) + predicted.append(float(prediction(input_, target, model))) + + MSE = mean_squared_error(expected, predicted) + MAE = mean_absolute_error(expected, predicted) + + mlflow.log_metric("MSE", MSE) + mlflow.log_metric("MAE", MAE) + + + with open("result.txt", "w+") as file: + for i in range(0, len(val_ds), 1): + input_, target = val_ds[i] + file.write(str(predict_single(input_, target, model))) + + torch.save(model, "Model_xPosition.pkl") + # ex.add_artifact("Model_xPosition.pkl") + +with mlflow.start_run() as run: + my_main(epochs) \ No newline at end of file