import torch import jovian import torchvision import matplotlib import torch.nn as nn import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import torch.nn.functional as F from torchvision.datasets.utils import download_url from torch.utils.data import DataLoader, TensorDataset, random_split import random import os import sys import mlflow from mlflow.models import infer_signature from urllib.parse import urlparse from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error mlflow.set_experiment("s478839") def my_config(): epochs = 1000 #load data dataframe = pd.read_csv("understat.csv") #choose columns input_cols=list(dataframe.columns)[4:11] output_cols = ['position'] input_cols, output_cols def dataframe_to_arrays(dataframe): dataframe_loc = dataframe.copy(deep=True) inputs_array = dataframe_loc[input_cols].to_numpy() targets_array = dataframe_loc[output_cols].to_numpy() return inputs_array, targets_array inputs_array, targets_array = dataframe_to_arrays(dataframe) inputs = torch.from_numpy(inputs_array).type(torch.float) targets = torch.from_numpy(targets_array).type(torch.float) dataset = TensorDataset(inputs, targets) train_ds, val_ds = random_split(dataset, [548, 136]) batch_size=50 train_loader = DataLoader(train_ds, batch_size, shuffle=True) val_loader = DataLoader(val_ds, batch_size) class Model_xPosition(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(input_size,output_size) def forward(self, xb): out = self.linear(xb) return out def training_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calcuate loss loss = F.l1_loss(out,targets) return loss def validation_step(self, batch): inputs, targets = batch out = self(inputs) loss = F.l1_loss(out,targets) return {'val_loss': loss.detach()} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() return {'val_loss': epoch_loss.item()} def epoch_end(self, epoch, result, num_epochs): if (epoch+1) % 100 == 0 or epoch == num_epochs-1: print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss'])) def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() result = evaluate(model, val_loader) model.epoch_end(epoch, result, epochs) history.append(result) return history def predict_single(input, target, model): inputs = input.unsqueeze(0) predictions = model(inputs) prediction = predictions[0].detach() return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n" def prediction(input, model): inputs = input.unsqueeze(0) predictions = model(inputs) predicted = predictions[0].detach() return predicted input_size = len(input_cols) output_size = len(output_cols) model=Model_xPosition() lr = 1e-5 # epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 20 epochs = 1000 def my_main(epochs): mlflow.log_param("epochs", epochs) learning_proccess = fit(epochs, lr, model, train_loader, val_loader) for i in random.sample(range(0, len(val_ds)), 10): input_, target = val_ds[i] print(predict_single(input_, target, model),end="") expected = [] predicted = [] inputs = [] for i in range(0, len(val_ds), 1): input_, target = val_ds[i] expected.append(float(target)) predicted.append(float(prediction(input_, model))) inputs.append(input_) MSE = mean_squared_error(expected, predicted) MAE = mean_absolute_error(expected, predicted) mlflow.log_metric("MSE", MSE) mlflow.log_metric("MAE", MAE) with open("result.txt", "w+") as file: for i in range(0, len(val_ds), 1): input_, target = val_ds[i] file.write(str(predict_single(input_, target, model))) print(inputs) # input_example = val_ds[0] # # input_example = input_example.unsqueeze(0) # signature = infer_signature(input_[0], prediction(input_[0], model)) # tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme # if tracking_url_type_store != "file": # mlflow.pytorch.log_model(model, "model", registered_model_name="s478839", signature=siganture, # input_example=input_example) # else: # mlflow.pytorch.log_model(model, "model", signature=siganture, input_example=input_example) # mlflow.pytorch.save_model(model, "my_model", signature=siganture, input_example=input_example) with mlflow.start_run() as run: my_main(epochs)