#!/usr/bin/env python # coding: utf-8 # In[233]: import torch import torch.nn as nn import torch.nn.functional as F import pandas as pd import numpy as np import random from sklearn.model_selection import train_test_split from torch.utils.data import DataLoader, TensorDataset, random_split from sklearn import preprocessing class Model(nn.Module): def __init__(self): super().__init__() # self.fc1 = nn.Linear(2, 60) # self.fc2 = nn.Linear(60, 30) # self.out = nn.Linear(30, 1) self.linear = nn.Linear(2, 616) def forward(self, x): out = torch.sigmoid(self.linear(x)) return out def training_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calcuate loss loss = F.l1_loss(out,targets) return loss def validation_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calculate loss loss = F.l1_loss(out,targets) return {'val_loss': loss.detach()} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() return {'val_loss': epoch_loss.item()} def epoch_end(self, epoch, result, num_epochs): # Print result every 100th epoch if (epoch+1) % 100 == 0 or epoch == num_epochs-1: print("Epoch [{}], val_loss: {:.4f}".format(epoch+1, result['val_loss'])) # In[234]: data = pd.read_csv('understat.csv') # In[235]: training_data = data.sample(frac=0.9, random_state=25) testing_data = data.drop(training_data.index) # In[236]: train_set = training_data[['matches', 'wins', 'position']] test_set = testing_data[['matches', 'wins', 'position']] # In[237]: # Zamiana danych na tensory X_train = train_set[['matches', 'wins']].to_numpy() X_test = test_set[['matches', 'wins']].to_numpy() y_train = train_set['position'].to_numpy() y_test = test_set['position'].to_numpy() X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) y_train = torch.LongTensor(y_train) y_test = torch.LongTensor(y_test) # In[238]: train_dataset = TensorDataset(X_train, y_train) test_dataset = TensorDataset(X_test, y_test) # In[239]: batch_size=50 train_loader = DataLoader(train_dataset, batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size) # In[240]: # Hiperparametry model = Model() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # In[241]: def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() result = evaluate(model, val_loader) model.epoch_end(epoch, result, epochs) history.append(result) return history # In[242]: epochs = 1000 def print_(loss): print ("The loss calculated: ", loss) # In[243]: for epoch in range(1, epochs+1): y_pred = model(X_train) loss = loss_fn(y_pred, y_train) if epoch%100 == 0: print ("Epoch #",epoch) print_(loss.item()) # Zero gradients optimizer.zero_grad() loss.backward() # Gradients optimizer.step() # Update # In[244]: def predict_single(input, target, model): inputs = input.unsqueeze(0) predictions = model(inputs) prediction = predictions[0].detach() return "Target: "+str(target)+"----- Prediction: "+str(prediction)+"\n" # In[245]: for i in random.sample(range(0, len(test_dataset)), 10): input_, target = test_dataset[i] print(predict_single(input_, target, model),end="") # In[246]: with open("result.txt", "w+") as file: for i in range(0, len(test_dataset), 1): input_, target = test_dataset[i] file.write(str(predict_single(input_, target, model)))