57 lines
1.6 KiB
Docker
57 lines
1.6 KiB
Docker
# Obraz ubuntu latest
|
|
FROM ubuntu:latest
|
|
|
|
# Instalacja niezbędnych bibliotek
|
|
RUN apt update
|
|
RUN apt-get update
|
|
RUN apt install -y figlet
|
|
RUN export PATH=”$PATH:/usr/local/bin/python”
|
|
RUN apt install python3-pip -y
|
|
RUN apt install unzip -y
|
|
RUN pip3 install kaggle
|
|
RUN pip3 install pandas
|
|
RUN pip3 install torch
|
|
RUN pip3 install torchvision
|
|
RUN pip3 install jovian
|
|
RUN pip3 install matplotlib
|
|
RUN pip3 install seaborn
|
|
RUN pip3 install sklearn
|
|
RUN pip3 install sacred
|
|
RUN pip3 install numpy
|
|
RUN pip3 install wheel --no-deps -U
|
|
RUN pip3 install GitPython
|
|
# RUN pip3 install pymongo
|
|
RUN pip3 install mlflow
|
|
|
|
|
|
# Przygotowanie kaggle
|
|
RUN mkdir ~/.kaggle/
|
|
RUN echo '{"username":"sebastianwalesa","key":"c879e3806be4cd6ade7aa10ea81d4cfe"}' > ~/.kaggle/kaggle.json
|
|
|
|
# Stwórzmy w kontenerze (jeśli nie istnieje) katalog /app i przejdźmy do niego (wszystkie kolejne polecenia RUN, CMD, ENTRYPOINT, COPY i ADD będą w nim wykonywane)
|
|
WORKDIR /app
|
|
|
|
# Skopiujmy nasz skrypt do katalogu /app w kontenerze
|
|
COPY ./skrypt.sh ./
|
|
COPY ./init.py ./
|
|
# COPY ./understat.csv ./
|
|
COPY ./ml_pytorch_mlflow.py ./
|
|
COPY ./prediction-s444409.py ./
|
|
|
|
|
|
# RUN pip3 install dvc
|
|
# RUN pip3 install dvc[ssh] paramiko
|
|
# RUN apt-get remove openssh-client
|
|
# ENV TZ=Europe/Warsaw
|
|
# RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone
|
|
|
|
# RUN apt update
|
|
# RUN apt install -y tzdata
|
|
# RUN apt-get update
|
|
# RUN apt-get install -y openssh-server
|
|
|
|
# RUN apt install -y sshpass openssh-client
|
|
# RUN useradd -r -u 111 jenkins
|
|
|
|
# Domyślne polecenie, które zostanie uruchomione w kontenerze po jego starcie
|
|
CMD ./skrypt.sh |