ium_478839/ml_pytorch_results.py

209 lines
4.9 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import jovian
import torchvision
import matplotlib
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import torch.nn.functional as F
from torchvision.datasets.utils import download_url
from torch.utils.data import DataLoader, TensorDataset, random_split
import random
import os
import sys
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
# In[2]:
#load data
dataframe = pd.read_csv("understat.csv")
#choose columns
input_cols=list(dataframe.columns)[4:11]
output_cols = ['position']
input_cols, output_cols
# In[3]:
def dataframe_to_arrays(dataframe):
dataframe_loc = dataframe.copy(deep=True)
inputs_array = dataframe_loc[input_cols].to_numpy()
targets_array = dataframe_loc[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array, targets_array = dataframe_to_arrays(dataframe)
inputs = torch.from_numpy(inputs_array).type(torch.float)
targets = torch.from_numpy(targets_array).type(torch.float)
dataset = TensorDataset(inputs, targets)
# In[4]:
train_ds, val_ds = random_split(dataset, [548, 136])
batch_size=50
train_loader = DataLoader(train_ds, batch_size, shuffle=True)
val_loader = DataLoader(val_ds, batch_size)
# In[5]:
class Model_xPosition(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size,output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
loss = F.l1_loss(out,targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
out = self(inputs)
loss = F.l1_loss(out,targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
print("Epoch {} loss: {:.4f}".format(epoch+1, result['val_loss']))
def evaluate(model, val_loader):
outputs = [model.validation_step(batch) for batch in val_loader]
return model.validation_epoch_end(outputs)
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
history = []
optimizer = opt_func(model.parameters(), lr)
for epoch in range(epochs):
for batch in train_loader:
loss = model.training_step(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
result = evaluate(model, val_loader)
model.epoch_end(epoch, result, epochs)
history.append(result)
return history
# In[6]:
input_size = len(input_cols)
output_size = len(output_cols)
model=Model_xPosition()
# In[7]:
epochs = 1000
lr = 1e-5
learning_proccess = fit(epochs, lr, model, train_loader, val_loader)
# In[8]:
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(inputs)
prediction = predictions[0].detach()
return "Target: "+str(target)+" Predicted: "+str(prediction)+"\n"
# In[9]:
def prediction(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(inputs)
predicted = predictions[0].detach()
return predicted
# In[10]:
with open("result.txt", "a+") as file:
for i in range(0, len(val_ds), 1):
input_, target = val_ds[i]
file.write(str(predict_single(input_, target, model)))
# In[11]:
expected = []
predicted = []
for i in range(0, len(val_ds), 1):
input_, target = val_ds[i]
expected.append(float(target))
predicted.append(float(prediction(input_, target, model)))
MSE = mean_squared_error(expected, predicted)
MAE = mean_absolute_error(expected, predicted)
with open("metrics.txt", "a+") as file:
file.write("Mean squared error: MSE = "+ str(MSE) + "\n")
file.write("Mean absolute error: MAE = "+ str(MAE)+ "\n")
with open("MSE.txt", "a+") as file:
file.write(str(MSE) + "\n")
# In[12]:
with open('MSE.txt') as file:
y_MSE = [float(line) for line in file if line]
x_builds = list(range(1, len(y_MSE) + 1))
# In[13]:
plt.xlabel('Number of builds')
plt.ylabel('MSE')
plt.plot(x_builds, y_MSE, label='Mean squared error')
plt.legend()
plt.show()
plt.savefig('RMSplot.png')
# In[ ]:
# get_ipython().system('jupyter nbconvert --to script ml_pytorch.ipynb')