retroc2/.ipynb_checkpoints/run-checkpoint.ipynb

195 lines
4.7 KiB
Plaintext
Raw Normal View History

2022-05-17 18:26:32 +02:00
{
"cells": [
{
"cell_type": "code",
2022-05-17 23:11:21 +02:00
"execution_count": 1,
2022-05-17 18:26:32 +02:00
"id": "d103a6c5-a9b4-4547-9e10-f384d716972d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"import sklearn\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.linear_model import LinearRegression\n",
2022-05-18 00:39:36 +02:00
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.pipeline import make_pipeline"
2022-05-17 18:26:32 +02:00
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6a2785e6-36b0-4649-91d1-aea8fd3599c1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\Programy\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3444: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version.\n",
"\n",
"\n",
" exec(code_obj, self.user_global_ns, self.user_ns)\n"
]
2022-05-17 23:11:21 +02:00
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"107463\n"
]
2022-05-17 18:26:32 +02:00
}
],
"source": [
"train = pd.read_csv('train/train.tsv', header=None, sep='\\t', error_bad_lines=False)\n",
2022-05-17 23:11:21 +02:00
"print(len(train))\n",
2022-05-18 00:51:36 +02:00
"train = train.head(40000)"
2022-05-17 18:26:32 +02:00
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8cc00b89-1007-4c4a-8ba7-c62b57459b79",
"metadata": {},
"outputs": [],
"source": [
"x_train = train[4]\n",
"y_train = train[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dd454ce5-a06e-4fbd-a546-83fb94ad0390",
"metadata": {},
"outputs": [],
"source": [
"x_dev_data = pd.read_csv('dev-0/in.tsv', header=None, sep='\\t')\n",
"x_dev = x_dev_data[0]\n",
2022-05-17 23:11:21 +02:00
"x_dev[19999] = \"to jest tekst testowy\"\n",
"x_dev[20000] = \"a ten tekst jest najbardziej testowy\"\n",
"y_dev = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')"
2022-05-17 18:26:32 +02:00
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0a1cce75-86a1-4f76-9416-e876e01699e3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
2022-05-18 00:39:36 +02:00
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
" ('linearregression', LinearRegression())])"
2022-05-17 18:26:32 +02:00
]
},
2022-05-18 00:39:36 +02:00
"execution_count": 5,
2022-05-17 18:26:32 +02:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2022-05-18 00:39:36 +02:00
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
"model.fit(x_train, y_train)"
2022-05-17 18:26:32 +02:00
]
},
{
"cell_type": "code",
2022-05-18 00:39:36 +02:00
"execution_count": 6,
2022-05-17 18:26:32 +02:00
"id": "cc1270d5-29dc-4f03-82c1-dc03f3e4fa00",
"metadata": {},
2022-05-18 00:39:36 +02:00
"outputs": [],
2022-05-17 18:26:32 +02:00
"source": [
2022-05-18 00:39:36 +02:00
"dev_predicted = model.predict(x_dev)\n",
2022-05-17 18:26:32 +02:00
"\n",
"with open('dev-0/out.tsv', 'wt') as f:\n",
" for i in dev_predicted:\n",
" f.write(str(i)+'\\n')\n",
"\n",
"dev_out = pd.read_csv('dev-0/out.tsv', header=None, sep='\\t')\n",
2022-05-17 23:11:21 +02:00
"dev_expected = pd.read_csv('dev-0/expected.tsv', header=None, sep='\\t')\n"
2022-05-17 18:26:32 +02:00
]
},
{
"cell_type": "code",
2022-05-18 00:39:36 +02:00
"execution_count": 7,
2022-05-17 18:26:32 +02:00
"id": "223de995-5e91-4254-9214-4fc871c985e9",
"metadata": {},
2022-05-18 00:39:36 +02:00
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2022-05-18 00:51:36 +02:00
"4289.2810262872745\n"
2022-05-18 00:39:36 +02:00
]
}
],
2022-05-17 18:26:32 +02:00
"source": [
"print(mean_squared_error(dev_out, dev_expected))"
]
},
{
"cell_type": "code",
2022-05-18 00:39:36 +02:00
"execution_count": 8,
2022-05-17 18:26:32 +02:00
"id": "3bc8418b-64f1-4163-a0ec-8e3293032341",
"metadata": {},
"outputs": [],
"source": [
"with open('test-A/in.tsv', 'r', encoding = 'utf-8') as f:\n",
" x_test = f.readlines()\n",
" \n",
2022-05-18 00:39:36 +02:00
"# x_test = pd.Series(x_test)\n",
"# x_test = vectorizer.transform(x_test)\n",
2022-05-17 18:26:32 +02:00
"\n",
2022-05-18 00:39:36 +02:00
"test_predicted = model.predict(x_test)\n",
2022-05-17 18:26:32 +02:00
"\n",
"with open('test-A/out.tsv', 'wt') as f:\n",
" for i in test_predicted:\n",
" f.write(str(i)+'\\n')"
]
2022-05-17 23:11:21 +02:00
},
{
"cell_type": "code",
2022-05-18 00:39:36 +02:00
"execution_count": 9,
2022-05-17 23:11:21 +02:00
"id": "a18aea56-7fa1-40bd-8aa3-bbaf9d66d6b7",
"metadata": {},
2022-05-18 00:39:36 +02:00
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook run.ipynb to script\n",
"[NbConvertApp] Writing 1607 bytes to run.py\n"
]
}
],
2022-05-17 23:11:21 +02:00
"source": [
"!jupyter nbconvert --to script run.ipynb"
]
2022-05-17 18:26:32 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}